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Implicit Monte Carlo (IMC) is often employed to numerically simulate radiative
transfer. In problems with regions that are characterized by a small mean free path,
IMC can take a prohibitive amount of time, because many particle steps must be
simulated to advance the particle through the time step. Problems containing regions
with a small mean free path can frequently be accurately simulated much more
quickly by employing the diffusion equation as an approximation. However, the
diffusion approximation is not accurate in regions of the problem where the mean
free path is large.

We present a method for accelerating time-dependent Monte Carlo radiative trans-
fer calculations by using a discretization of the diffusion equation to calculate prob-
abilities that are used to advance particles in regions with small mean free paths.
The method is demonstrated on problems with one-and two-dimensional orthogo-
nal grids. It results in decreases in run time of more than an order of magnitude
on these problems, while producing answers with accuracy comparable to pure
IMC simulations. We call the method Implicit Monte Carlo Diffusion, which we
abbreviate IMD. c© 2001 Academic Press

1. INTRODUCTION

The time-dependent transport equation for gray photons in the absence of scattering is [1]

1

c

∂ I

∂t
+ Ä̂ · ∇ I = −σa I + cσaaT4

4π
, (1)

wherec is the speed of light,σa is the macroscopic absorption cross section in inverse length
units, andT is the matter temperature. The transport equation is coupled to the material
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energy balance equation [1]

∂Em

∂t
= ρcv

∂T

∂t
= σa

∫
I dÄ− cσaaT4. (2)

Here,Em is the matter energy density in units of energy per volume,ρ is the mass density,
and cv is the specific heat capacity in units of energy per mass per temperature. These
equations can be solved by a Monte Carlo method described in [2]. The method discretizes
the problem on a mesh. Each zone has a temperature and an absorption cross section.
Particles representing photons are created in the zones at the beginning of each time step
according to the emission term in the transport equation. Then the photons are followed
through the zones, which heats them according to the absorption term in Eq. (1). The
temperatures are updated at the end of the time step, using Eq. (2), and the process is
repeated.

This method becomes unstable when time steps of the order of

1t = ρcv
aT3cσa

(3)

are taken [3]. This instability occurs when the matter and radiation fields exchange an amount
of energy comparable to the amount of energy necessary to change the matter temperature
a nonnegligible amount in one time step. If the matter is only able to absorb energy during a
time step, but is not able to reradiate, as in the algorithm in [2], then instabilities will occur.
The inability of the matter to reradiate the energy it absorbs from the radiation during a time
step is related to the fact that the temperature in the emission term of the transport equation
is calculated using the temperature at the beginning of the time step.

A method for solving the photon transport equation with improved stability when large
time steps are taken was provided by Fleck and Cummings [3]. The method was dubbed
Implicit Monte Carlo, usually abbreviated IMC. IMC works by using the matter energy
balance equation to estimate the future matter temperature, and using this estimate in the
transport equation. This substitution has the effect of reducing the absorption opacity in the
transport equation by a factor of

f = 1

1+ βc1tσa
(4)

and adding an equal amount of thermally redistributed isotropic scattering. Hereβ =
4aT3/ρcv. This change allows the calculation to be run with much larger time steps before
instabilities arise [4].

The factor f is small when photons are being absorbed and quickly reemitted by the
matter. Problems in which this occurs are said to exhibit tight coupling between the ra-
diation and matter. IMC replaces the absorption and rapid reemission occurring in tightly
coupled problems with isotropic scattering. This scattering is usually referred to as the
effective scattering, to distinguish it from physical scattering. The effective scatteringσs =
(1− f )σa.

When the scattering, either physical or effective, is large, then the mean free path of
photons can be much smaller than a typical dimension of the zones in the discretized
mesh. IMC particles take many steps in these zones. Each simulated photon path in an IMC
calculation is about equally expensive; thus, simulations with a large scattering cross section
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can be very time consuming to calculate. The end result of applying the IMC algorithm is
to enable the use of much larger time steps, at the cost of making highly absorbing, tightly
coupled problems as expensive to run as highly scattering ones.

When the factorf is small, most of the absorption opacity is replaced by an effective
scattering opacity which is isotropic. If the mean free path for this effective scattering is
small, then the solution of the transport equation will be well approximated by the solution
of the diffusion equation [5].

The diffusion equation describes the time development of the radiation energy density,
which is the zeroth angular moment of the intensityI ;

∂E

∂t
+∇ · F = cσaaT4− cσaE, (5)

whereE, the radiation energy density, is defined by

E = 1

c

∫
I dÄ, (6)

and the fluxF , the first angular moment of I is defined by

F =
∫
Ä̂I dÄ. (7)

To allow us to calculate E from this equation, we must define F in terms of E. This is
usually done by using Fick’s law,

F = −cD∇E, (8)

whereD = 1/(3σ) is the diffusion coefficient.
The diffusion equation can be derived from the transport equation by taking angular

moments of the transport equation and taking the limit as the factor

ε = σ−1

L
= mean free path

characteristic length of the flux
(9)

becomes small [5]. The solution of the diffusion equation is an accurate approximation
to the first angular moment of the solution of the transport equation when the intensity
describes photons with a nearly isotropic angular distribution which is slowly varying in
space and time. Thus, the diffusion equation can provide an accurate approximation for
highly scattering problems where IMC is prohibitively expensive.

The numerical solution of the diffusion equation is usually more rapid than the numerical
solution of the transport equation in situations where the diffusion approximation is applica-
ble [1]. Since IMC is expensive where diffusion is accurate, solution techniques have been
developed that employ IMC in the parts of the problem with a small effective scattering,
and some form of diffusion in the parts of the problem with a large effective scattering [6].
These are referred to as hybrid methods.

A hybrid technique involves solving the diffusion equation on some regions of the grid
and using IMC on other regions. The IMC simulation provides a flux that is used as a
boundary condition for the solution of the diffusion equation, which usually requires a
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matrix inversion. The flux of energy out of the diffusion region is turned into particles used
by the IMC in the next time step.

This paper presents a new hybrid scheme, which is based on a Monte Carlo solution of the
diffusion equation. This method uses the matrix resulting from discretizing the diffusion
equation to derive probabilities for particles to deposit energy, reach census, or jump to
another zone. Since this method involves a Monte Carlo solution that is similar to IMC,
and uses the same stabilization technique as IMC, we have dubbed it Implicit Monte Carlo
Diffusion, which we abbreviate IMD.

The IMD particle can jump to a new zone in one step, rather than taking many IMC
steps. Our method in effect rolls many expensive IMC steps into one very cheap IMD step.
Thus the calculation proceeds much more rapidly in the diffusion region than it would if we
employed IMC there. Particles can freely cross the boundary between the diffusion region
and the IMC region, and so the two methods are easy to couple together.

In the following sections, we develop the IMD algorithm and show how to make a hybrid
IMC/IMD method. In Section 2, we describe the discretization of the diffusion equation.
In Section 3, we show how to solve the matrix equation obtained by this discretization by
a Monte Carlo method which resembles IMC. In Section 4, we describe how to use the
Monte Carlo diffusion method with IMC in a hybrid method. In Section 5, we compare
and contrast this hybrid method to other hybrid methods. In Section 6, we apply this hybrid
method to various gray opacity test problems. We show that it can be considerably faster
than IMC alone on problems with very opaque regions, while yielding a similar result.

2. DISCRETIZING THE DIFFUSION EQUATION

We begin by considering the diffusion equation in Cartesian coordinates in a one-
dimensional slab geometry, as derived in [7]. Our development will rely heavily on this
derivation. The diffusion equation under these assumptions is [7]

1

c

∂E

∂t
− ∂

∂x

[
D
∂E

∂x

]
= σaaT4− σaE. (10)

We discretize this equation as in [7]. We takeE to be a zone-centered variable, and use
backward Euler time differencing. The result is

1

c

En+1
j − En

j

1t
− Fn+1

j+1/2− Fn+1
j−1/2

1xj
= σa j

(
aTn

j
4− En+1

j

)
. (11)

Here j is a zone index, andj + (−)1/2 indicates the face in the increasing (decreasing)x
direction.

In zones with neighbors, we can getF at the edges by discretizing Fick’s law as

Fn+1
j+1/2 = cDj+1/2

En+1
j+1 − En+1

j

1xj+1/2
, (12)

where

Dj+1/2 = 21xj+1/2

[
Dj D j+1

Dj1xj+1+ Dj+11xj

]
(13)
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and

1xj+1/2 = (1xj +1xj+1)/2. (14)

(As noted in [7], the harmonic average given in Eq. (13) will yield a small value for the
face diffusion coefficient in cases where either zone has a small diffusion coefficient. This
can occur in problems with temperature-dependent opacities that are large in cold matter.
A small diffusion coefficient leads to a small flux via Eq. (12); thus, the diffusion of heat
into cold, opaque material may be unphysically retarded. In [7], a means of dealing with
this problem is outlined: essentially, the values ofD employed in face calculations such
as Eq. (13) are calculated using a common temperature derived from the temperatures of
the neighboring zones. In this paper, this issue does not arise, because we have run only
simulations with temperature-independent opacities.)

For the two edges at the ends of the problem, we getF from the boundary condition
given in [7],

F = c

4
[E + 2Dn̂ · ∇E] , (15)

wheren̂ is the outward normal at the edge.
(We should note an issue, described in [7], that arises in the calculation of the diffusion

coefficientD. This is the use of a flux limiter to prevent superluminal energy transport in
regions with a small opacity. Several flux limiters and their effects are considered in [8].
Flux limiters are not used in the IMD method, because IMC is used in the places where the
flux limiter would be employed in a diffusion approximation. This is discussed further in
the next section.)

The source term in Eq. (11) depends on the current matter temperatureTn
j , rather than

the future matter temperatureTn+1
j , which would make the time differencing fully implicit.

This can affect the quality of the solution, as discussed in [7]. This dependence on the
current matter temperature rather than the future matter temperature is what led to the time
step restriction given by Eq. (3) in the Monte Carlo solution of the transport equation.

This problem is addressed in [7] by iterating on the matter temperature, but that requires
multiple matrix inversions per time step. Instead, we choose to solve it in the same manner
employed to stabilize the IMC algorithm. We will use the matter temperature equation,
Eq. (2), to get an estimate of the future matter temperature, and use that estimate forT in
theσaaT4 term in Eq. (10). Our development will closely follow that in [3], and has the
same purpose—to allow us to use larger time steps in our simulation without encountering
instability.

We begin by definingEr ≡ aT4 and using the chain rule to relate the time derivative of
Er to that ofEm:

∂Er

∂t
= ∂Er

∂Em

∂Em

∂t
. (16)

We use the chain rule again to get an expression for∂Er /∂Em, which is

∂Er

∂Em
= ρcv∂T/∂t

4aT3∂T/∂t
= ρcv

4aT3
= β, (17)
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whereβ is defined as in Eq. (4). Substituting these last two results, and the definition ofE
given by Eq. (6), in Eq. (2), we get an expression for the time derivative ofEr :

∂Er

∂t
= βcσaE − βcσaEr . (18)

Next, we difference Eq. (18) by backward Euler to get an expression for the future value
of Er :

En+1
r = En

r +1t
[
βcσaE − βcσaEn+1

r

]
. (19)

Collecting terms containingEn+1
r yields

En+1
r (1+ βc1tσa) = En

r + βc1tσaE, (20)

and solving this forEn+1
r results in

En+1
r = f En

r + (1− f )E, (21)

where f is the same factor, defined by Eq. (4), that is employed in IMC.
Finally, using the definition ofEr asaT4, we useEn+1

r as the estimate foraT4 in Eq. (10).
The result of this substitution is

1

c

∂E

∂t
− ∂

∂x

[
D
∂E

∂x

]
= f σaaT4− f σaE, (22)

whereT is regarded as thetn value. As in IMC, this transformation results in effective
isotropic scattering, which shows up in the diffusion coefficient. In the presence of scattering,
D is defined in terms of the sum of the absorption and scattering opacities, so its value
remains unchanged.

This transformed diffusion equation could also have been derived by starting with the
transport equation as modified by IMC, integrating over angle, and applying Fick’s law.
This derivation would parallel the one in [5] with a factor off modifying σa everywhere
and a scattering opacity of(1− f )σa in the transport equation.

We now difference Eq. (22) in time. The result is Eq. (11), with the addition of factors
of f multiplying the source terms on the right-hand side. Using the definitions of the flux
from Eq. (12) and collecting coefficients results in[

1+ c1t f jσa j + c
1t

1xj

D j−1/2

1xj−1/2
+ c

1t

1xj

D j+1/2

1xj+1/2

]
En+1

j − c
1t

1xj

D j−1/2

1xj−1/2
En+1

j−1

− c
1t

1xj

D j+1/2

1xj+1/2
En+1

j+1 = c1t f σa jaTn
j

4+ En
j . (23)

At the x = 0 boundary, we get a similar equation relatingEn+1
1 and En+1

2 by using a
difference formulation of Eq. (15) forFn+1

−1/2 and inserting the result into Eq. (11). The result
is [

1+ c1t f1σa 1+ c
1t

1x1

3/2D1σa 1

1+ 31x1σa 1/4
+ c

1t

1xj

D3/2

1x3/2

]
En+1

1 − c
1t

1x1

D3/2

1x3/2
En+1

2

= c1t f σaaTn
1

4+ En
1 + 4

[
3/2D1σa 1

1+ 31x1σa 1/4

]
F0

c1x1
. (24)
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In this equation,F0 is the flux through the boundary atx = 0, which adds energy into the
source term in zone 1. A similar equation is obtained at thex = xmax end of the problem.

The equation definingEn+1
j in terms of the neighboring valuesEn+1

j+1 andEn+1
j−1 is a matrix

equationAx = b, with the En+1
j the components of the unknownx and the source terms

the components ofb. The matrix A is tridiagonal and can easily be solved by standard
techniques [9]. In the next section, we outline a Monte Carlo technique for solving it.

In a manner similar to that applied above, we can get a matrix equation for a zone-centered
discretization of the diffusion equation in cylindrical coordinates in a two-dimensional ax-
ially symmetric geometry on an orthogonal mesh. Employing the usual five-point differ-
encing scheme results in a similar set of equations which has five off-diagonal bands.

In both the Cartesian one-dimensional and the orthogonal cylindrical case, the matter
energy density satisfies the same equation:

∂Em

∂t
= f σa

∫
I dÄ− c fσaaT4. (25)

This is the same equation satisfied by the matter energy density in the IMC formulation.
The change in the matter energy density given by Eq. (25) is the difference between the

energy thermally radiated by the matter and the energy absorbed from the radiation field.
Often this equation is solved by introducing the heat capacity and writing

ρcv
∂T

∂t
= f σa

∫
I dÄ− c fσaaT4, (26)

which can be differenced and solved for the temperature ifcv is assumed constant. This
difference equation only conserves energy ifcv is actually constant. We prefer to difference
Eq. (25) as

En+1
m j = En

m j + Eabsorbed j−1tc f jσa jaTn
j

4
, (27)

whereEabsorbed j is the amount of energy absorbed by the matter from the radiation field
and is obtained from the solution of the diffusion equation.

Using Eq. (27),En+1
m j is solved for the new matter energy attn+1, which can be numerically

inverted using the equation of state to obtain the new matter temperatureTn+1.

3. SOLVING THE DISCRETIZED DIFFUSION EQUATION

BY A MONTE CARLO TECHNIQUE

The matrix equations arising from the discretizations of the one-dimensional Cartesian
and the two-dimensional orthogonal cylindrical diffusion equations are similar. In both
cases, the diagonal element consists of the sum of the following terms: unity, arising from
the time derivative term;c1t f σa, arising from the absorption term; and several terms, one
for each neighboring zone, involving the diffusion coefficient and geometric factors, which
arise from the flux term. The off-diagonal elements are the negatives of these diffusion
coefficient terms. Both matrices are diagonally dominant, and symmetric, and hence are
symmetric positive definite.

The source terms are the same in both cases, consisting of the sum of the old energy
density in the zoneEn

j and a source term depending on the temperature,c1t f σaaT4.
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Here, we derive a Monte Carlo solution technique that is applicable to both the one-
dimensional and the two-dimensional discretized diffusion equations (and is in fact appli-
cable to any symmetric matrix equation in which the sign of the diagonal is the opposite
of the sign of the off-diagonal terms.) Our derivation employs Eq. (23) above, but the
generalization to the two-dimensional case, and other matrixes, is clear.

If we take the matrix equation defined by Eq. (23) and solve it forEn+1
j , we obtain the

following relation which defines the radiation energy density in zonej in terms of the
radiation energy density of neighboring zones and the energy of the source in zonej as

En+1
j = En+1

j−1 f̂ +j−1+ En+1
j+1 f̂ −j+1+ En

source j/d̂ j , (28)

where we have made several definitions. The source energy in zonej is defined as

En
source j≡ En

j + c1t f jσa jaTn
j

4; (29)

the diagonal term of the matrix,̂d j , which is the coefficient ofEn+1
j in Eq. (23) is defined

as

d̂ j ≡
[
1+ c1t f jσa j + c

1t

1xj

D j−1/2

1xj−1/2
+ c

1t

1xj

D j+1/2

1xj+1/2

]
; (30)

and the off-diagonal terms are defined as

f̂ +j = c
1t

1xj

D j+1/2

1xj+1/2

/
d̂ j , (31)

with f̂ −j defined similarly. We also defineEtotal =
∑

j En
source j. The symmetry of the matrix

is expressed by the fact thatf̂ +j = f̂ −j+1 and f̂ −j = f̂ +j−1.
We now describe a Monte Carlo technique that can be used to solve Eq. (28) above, which

is equivalent to solving the matrix equation Eq. (23) from which it was derived. Then we
will show that the estimate forEn+1

j obtained by this technique approaches (in the limit of
many particles) the solution of Eq. (28) and hence of Eq. (23).

The Monte Carlo solution technique requires that the following probabilities be defined.
The probability that a particle created in zonej will jump to zone j + 1 is

P+j ≡ f̂ +j /d̂ j . (32)

The probability that a particle created in zonej will jump to zone j − 1 is

P−j ≡ f̂ −j /d̂ j . (33)

The probability that the energy of a particle will be tallied into the array representing the
solution ofEn+1

j is

Pc
j ≡ 1/d̂ j . (34)

The probability that the energy of a particle will be tallied into the array representing the
solution ofEn+1

m j , the matter energy density, is

Pa
j ≡ cσa1t/d̂ j = 1− P+j − P−j − Pc

j . (35)
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The expressions defined in Eqs. (32)–(35) all satisfy the requirement that they be greater
than or equal to zero and less than or equal to unity, and they all add to unity. This can be
easily demonstrated. Since the diffusion coefficient,1x, and the1t are all positive,f̂ is
positive. Since the factorf defined by Eq. (4) and the absorption opacityσ are positive,
every term ind̂ is positive. The probabilities defined by Eqs. (32)–(35) are ratios of positive
numbers and so are greater than zero. All are ratios of some fraction ofd̂ to d̂, and so they
are all less than or equal to unity. Summing them yields unity. Thus the terms defined by
Eqs. (32)–(35) meet the requirements that probabilities must satisfy.

The Monte Carlo solution technique begins with the creation of a total numberN of
particles distributed among the zones of the mesh. The number of particles created in zone
j is Nj = N En

source j/Etotal. Each particle created in zonej has energyEparticle = Esource j/

Nj . The sum ofEparticle over all particles and zones isEtotal, so energy is strictly conserved
during creation of the particles.

Each particle now undergoes one of four processes. It can jump to zonej + 1 with a
probabilityP+j , or it can jump to zonej − 1 with a probabilityP−j . Its energy can be tallied
into En+1

j with a probabilityPc
j . We refer to this event as census, because it will be seen to

be analogous to the census event in the IMC algorithm. Or the energy of the particle can
be tallied into another variableEabsorbed j with probability Pa

j . Eabsorbed j will be seen to
be the energy absorbed by the matter in zonej . The determination of which of the four
alternatives occurs is done by comparing a random number to the probabilities.

If the particle jumps to a new zone, we continue the process, using the four probabilities
for the new zone. If the particle tallies into eitherEn+1

j or Eabsorbed j, or leaves the problem
through the ends, we are finished advancing it. A particle leaves the problem when it is in
the first zone,j = 1, and the particle is determined to jump to zonej − 1, or it is in the last
zone j = jmax and it is determined to jump to zonej + 1. When all the particles are either
tallied or have left the problem, we are through with the time step.

When we are through with the time step, we have computed two numbers for each
zone by the Monte Carlo process:En+1

j and Eabsorbed j. En+1
j is the estimate for the new

radiation energy density in the zone, and is used as the initial condition for the new time
step.Eabsorbed j is the amount of energy absorbed by the matter in the zone. The net energy
change of the matter in the zone is thusEabsorbed j− c1t f jσa jaTn

j
4. This net energy change

is used along with the equation of state to get the new temperatureTn+1
j of the material.

This gives us all the information we need to repeat the process and do another time step.
We now show that the expected value ofEn+1

j , which we denote〈En+1
j 〉, obtained from

this algorithm satisfies Eq. (28).
The expected value〈En+1

j 〉 satisfies〈
En+1

j

〉 = Pc
j lim

N→∞
EparticleNj , (36)

whereNj is the number of particles that pass through the zonej . A particle in zonej must
either be born in zonej or jump there from another zone. This implies that

lim
N→∞

Nj = P−j+1 lim
N→∞

Nj+1+ P+j−1 lim
N→∞

Nj−1+ Nborn,

where

Nborn = NtotalEsource j/Etotal = Esource j/Eparticle.
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Using these relations, we obtain〈
En+1

j

〉 = Pc
j P−j+1 lim

N→∞
EparticleNj+1+ Pc

j P+j−1 lim
N→∞

EparticleNj−1+ Pc
j Esource j. (37)

Using the symmetry of the matrix, the terms involving the products of probabilities satisfy

P+j−1 =
f̂ +j−1

d̂ j−1
= f̂ −j

d̂ j

d̂ j

d̂ j−1
= P−j Pc

j /Pc
j−1, (38)

which leads toP+j−1Pc
j = P−j Pc

j . Similarly, P−j+1Pc
j = Pc

j+1P+j .
Using these relations, and the definition ofPc

j = 1/d̂ j , we find that〈
En+1

j

〉 = P−j lim
N→∞

Pc
j+1EparticleNj+1+ P+j lim

N→∞
Pc

j−1EparticleNj−1+ Esource j/d̂ j . (39)

Using the definition of the expected value, this becomes〈
En+1

j

〉 = P−j
〈
En+1

j+1

〉+ P+j
〈
En+1

j−1

〉+ Esource j/d̂ j . (40)

The expected values for the energy produced by the algorithm satisfy the difference
equation Eq. (28) we wishEn+1

j to satisfy. Thus, we can take the results forEn+1
j we get

from the Monte Carlo simulation, which are obtained with a finite number of particles, as an
approximate solution of the equation. Since theEn+1

j represent the photon energy in zone
j at timen+ 1, the tally of a photon intoEn+1

j is analogous to an IMC particle reaching
census. On the next time step, the values forEn+1

j become theEn
j used in the source term.

A similar calculation shows that Eq. (24) can be manipulated to give probabilities that
hold in zone 1, and that these give rise to expectation values that satisfy Eq. (24). The
probabilities for zone 1 are derived by dividing the equation by the diagonal term, just as
they are in the case of Eq. (23). In particular, the value ofP−1 , the probability that the particle
leaves the problem though the boundary atx = 0, comes from the term in the denominator
that arises from the boundary term in Eq. (24):

P−1 = c
1t

1x1

3/2D1σa 1

1+ 31x1σa 1/4

/
d̂1. (41)

A similar term arises at thex = xmax boundary. We tally the energy of particles that leave
the problem into the variableEescaped.

The IMD particles collectively carryEtotal, and they deposit energy in a conservative way.
This implies

∑
j Eabsorbed j= Etotal−

∑
j En+1

j − Eescaped. Eabsorbed j, the energy that is not
tallied into census, must therefore be the amount of energy that was absorbed by the matter
in each zone. This energy is used to solve the matter energy balance Eq. (27) to obtain the
new matter temperatureTn+1

j .
The algorithm in the two-dimensional orthogonal case is exactly the same, except that

there are probabilities of jumping to four neighboring zones rather than two. The probabil-
ities of jumping in the two-dimensional case are given by dividing the flux by the diagonal
term, just as in the one-dimensional case.Pc andPa are given by the same expressions as
in the one-dimensional case.

Applying the Monte Carlo solution technique above to the matrix equations produces a
very simple, easy to code algorithm with a very physical interpretation, and which resembles
IMC very closely.
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The Monte Carlo diffusion procedure begins by starting some number of particles in
each zone. The weight of each particle in a zone is the value of the source term in that zone
divided by the number of particles in that zone. The source term isEn

j + c1t f jσa jaTn
j

4.
En

j is the radiation energy at timen, which corresponds to the photons in census in an IMC
calculation, whilec1t f jσa jaTn

j
4 is the energy radiated from the matter in that zone, just

as in an IMC calculation. So our particles have weights, interpretable as the energies that
IMC particles generated in the zones would have had. We will refer to these particles as
IMD particles.

IMD particles are advanced by drawing a random number and comparing it to the prob-
abilities derived from the matrix. The probability of reaching census, i.e., contributing to
En+1

j , is 1/d̂ j . If this event occurs, the particle’s energy is tallied into the variable holding
En+1

j . The probability of absorption isc1t f jσa j . If this event occurs, the particle’s energy
is tallied into the variable holding the amount of energy absorbed by the matter in that zone
from the radiation field. The probability of jumping to a new zonek is f̂ j,k/d̂ j , the ratio of
the fringe term associated with zonek to the diagonal of the current zonej . If this event
occurs, the particle is moved to zonek, a new random number is drawn, and the particle is
advanced again using the probabilities from zonek.

As a variance reduction technique, we can use a path length estimator for the census and
absorption events, rather than the last event estimator described above. In the last event
estimator, we tally all of the energy of the particle into census or absorption if that is the
event selected, and stop advancing the particle. In the path length estimator, we tally an
amount equal to the probability of census and absorption multiplied by the particle’s energy
on each step. Then we subtract the tallied energy from the particle’s energy. The particle
continues to move indefinitely with a decreasing energy. To prevent wasting computational
resources on particles with small weights, the particle is terminated when the weight reaches
some small fraction of the initial weight. The result of using this variance reduction method
is smoother results for the same number of particles. We have used.01 of the initial energy
as the termination energy in the calculations described in Section 6.

IMD, as a Monte Carlo method, produces a solution with statistical noise in it. This can
impact the solution of discretized diffusion equations with flux limiters.

As discussed in [7] and [8], flux limiters use some approximation of the slope of the
energy to modify the value of diffusion coefficientD when|∇E|/E is comparable toσ .
This occurs whenσ is small or when the radiation energy is changing rapidly, which is
when the diffusion approximation is not applicable. Flux limiters are essentially a way
to employ diffusion in regions where a full transport solution would be more appro-
priate.

Flux limiters causeD to depend nonlinearly on∇E. This nonlinearity would prevent
formulating the discretized diffusion equation as a matrix equation, sotn values forE are
often used. Iteration is also sometimes employed.

When IMD is used to invert the matrix, the statistical noise in the values obtained for
E will make the calculation of∇E used in the flux limiter inaccurate. This makes the
IMD algorithm a poor choice for solving flux-limited diffusion equations, although one
might be able to use it if some kind of smoothing was imposed on the values used to
calculate∇E. IMD is useful when coupled to IMC in a hybrid method. Then IMC can be
used where the transport equation is more appropriate (i.e., where a flux limiter would be
needed), and IMD can be used without a flux limiter where the diffusion approximation is
accurate.
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In the calculations described in this paper, we have employed the diffusion approximation
only in regions withσ so large that a flux limiter would not be expected to modify the value
of D. Experimentation confirmed that the flux limiter given above did not modify the value
of D obtained fromD = 1/(3σ). The hybrid results presented in Section 6 were not run
with a flux limiter in IMD.

Advancing the IMD particles is very similar to advancing IMC particles. They both
deposit energy in the matter, and reach census. Their tracking behavior is much simpler,
however. IMD particles do not have a position in the zone, a time within the time step,
or direction cosines. They are spatially associated with the whole zone and temporally
associated with the whole time step. This is because the diffusion equation results from an
integration over angles, and the discretization that produced the matrix employed zone and
time average quantities.

In a zone in which the effective scattering is large, an IMC particle will perform many
scatters. Each scatter is relatively expensive, requiring among other things, a calculation of
the distance from the IMC particle’s current location to the zone boundary, the computation
of a natural logarithm to determine the distance to a scatter, and several ‘if’ tests to determine
the particle’s fate. Advancing an IMD particle is much cheaper, because this distance to
boundary calculation is not needed, and because the particle always leaves the zone during a
step. In effect, many expensive IMC steps can be replaced by one inexpensive IMD step, at
the cost of replacing the solution of the transport equation with the solution of the diffusion
equation. If some region of the problem has a large effective scattering, we may be willing
to make this tradeoff, since the increase in speed may be quite large, while the decrease in
accuracy may be tolerable. In the next section, we describe the IMC/IMD hybrid method.
In the Section 5, we compare the IMC/IMD hybrid method to other hybrid methods. In
Section 6, we will demonstrate the IMC/IMD hybrid method on three test problems and
examine the results in terms of accuracy and performance.

4. AN IMC/IMD HYBRID METHOD

Hybrid algorithms, with IMC and diffusion running in the same problem, have been
described in the literature [6]. In these hybrid algorithms, part of the problem is run with
IMC, and the part with a large effective scattering, which would be prohibitively expensive
to run with IMC, is run with diffusion. Dividing the problem up in this way means selecting
the zones in which diffusion is an appropriate approximation, and forming a matrix equation
on each contiguous set of these zones. IMC particles are advanced through the zones not
selected as diffusion zones.

The similarity of IMD with IMC makes it easy to mate the two. The problem is divided into
IMD and IMC regions by identifying zones where the diffusion approximation is acceptable.
Since IMC particles are simulating the transport equation, which is accurate even in the
diffusive region, we can allow IMC particles to penetrate freely into these regions. The
IMC region does not provide a flux for the diffusion calculation, so no problems involving
negative probabilities of reflection result. These negative probabilities arise in the hybrid
method described in [6]. Since there is no flux into the diffusion region at its boundary, a
vacuum boundary condition is imposed there.

The matter in the problem radiates because of its temperature. In the IMC regions, this
radiation is modeled as a source of IMC particles. In the IMD regions, IMD particles are
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radiated. Since IMC particles can travel into IMD regions, they may deposit energy into
the matter in IMD regions. Thermal emission from these zones in subsequent time steps is
done by emitting IMD particles.

In effect, we are solving the transport equation with a source from the matter temperature
in zones which are not diffusive:

1

c

∂ I

∂t
+ Ä̂ · ∇ I = −σa I + cσaaT4

4π
. (42)

In zones which are diffusive we are solving the transport equation without a source,

1

c

∂ I

∂t
+ Ä̂ · ∇ I = −σa I , (43)

as well as the diffusion equation with a matter temperature source

1

c

∂E

∂t
− ∂

∂x

[
D
∂E

∂x

]
= σaaT4− σaE. (44)

In diffusive regions, where both IMC and IMD particles are being advanced, the radiation
energy density is the sum ofE, solved for in the diffusion equation, and the angular integral of
I , solved for in the transport equation. This representation is consistent since both equations
are linear in the energy variable. Both IMC and IMD particles contribute to heating the matter
in the diffusive regions. This is consistent since the equation for the rate of change of matter
energy density, Eq. (2), is linear in the angular integral ofI . Just as these linearities allow
the IMC algorithm to treat IMC particles as independent of one another, they allow us to
treat IMC and IMD particles as independent.

When an IMD particle jumps from a zone in the diffusive region into a zone in the IMC
region, it is converted into an IMC particle at the boundary between the zones. The IMC
particle has an energy equal to that of the IMD particle. A location on the interface between
the zones is calculated stochastically, as it would be for a source particle created on that
interface by, for example, a temperature source. Direction cosines are generated from the
cosine distribution, and a time betweentn andtn+1 is randomly assigned to the particle.

Since there is no natural time associated with IMD particles, we have chosen to assign
a random time to the IMC particles that result from the conversion of IMD particles. The
selection of a random time for the newly created IMC particle is consistent with the usual
treatment of surface fluxes in IMC codes. IMC particles generated from surface fluxes are
evenly distributed over a time step, and the IMD particles that are converted are acting as
a surface flux for the IMC. This is also the way times are assigned to IMC particles in the
hybrid method in [6].

When running an IMC simulation, we usually attempt to keep the total number of IMC
particles constant. In a hybrid simulation, we attempt to keep the sum of the total number
of IMC and IMD particles constant by apportioning particles between IMC and IMD in
the same ratio as the sum of source and census energy of the IMC and IMD particles. This
apportionment does not prevent conservation of energy, because we do not demand that the
energy of the IMC and IMD particles be exactly the same. However, we do perform Russian
rouletting of IMC particles when they are brought out of census, in order to apportion the
available IMC particles between census particles and source particles. This procedure does
cause conservation of energy to be statistical rather than exact. We keep track of the energy
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created or destroyed by this process. Including this energy allows us to calculate energy
balance for the whole code, and we find that this is conserved to one part in 1010 in all the
simulations presented in this paper.

Although the IMC particles will contribute to an accurate solution of the transport equa-
tion in regions of high effective scattering, they are still expensive to track in these regions.
We might wish to convert IMC particles to IMD particles to reduce the cost of the calcu-
lation. We have experimented with two methods for converting IMC particles into IMD
particles in diffusive regions.

The first is to convert IMC particles that reach census in diffusive regions into IMD
particles in the next time step. That is, when these particles are brought out of census, they
are converted to IMD particles rather than tracked as IMC particles.

The second is to convert IMC particles into IMD particles sometime after they cross into
a diffusive region. We do not convert them immediately because this would represent a
flux into the diffusive region, and we have imposed a vacuum boundary condition on the
interface of the diffusive region. Also, many IMC particles entering the diffusive region will
scatter back out. If we converted IMC particles into IMD particles immediately, many of the
IMD particles would come out and have to be converted back into IMC particles. Multiple
conversions from IMC to IMD and back are expensive. So we want to convert IMC particles
to IMD particles only after we have given them a chance to scatter back out of the diffusive
region. We do this by converting IMC particles only after they have scattered a certain
number of times. We have found by experiment with several test problems that converting
IMC particles in IMD regions to IMD particles after they take 50 IMC steps without leaving
the diffusive region produces good results with a useful reduction in the run time.

We wish to emphasize that the conversion of IMC particles to IMD particles is not a
necessary part of the hybrid IMC/IMD algorithm. It is an attempt to make the algorithm
faster by reducing the number of expensive IMC steps taken in the diffusive region of
problems. In particular, the conversion of IMC particles in diffusive regions after 50 steps is
not an attempt to use the Nth collided intensity approximation [11], although it appears to
be similar. The value of 50 scatters has been determined by experiment and may be problem
dependent.

We show in Section 6 that the hybrid method without conversions, and with the two meth-
ods of conversion discussed here, produces essentially the same answer on test problems.

IMC particles can travel through all zones of the problem within a radius ofc1t from their
point of origin. IMD particles can, by converting into IMC particles, also travel throughout
the problem. Thus, all zones in a problem which are causally connected can exchange
particles, even if they are in diffusive regions separated by IMC regions. These regions are
coupled together implicitly.

5. COMPARISON TO OTHER HYBRID METHODS

There are several existing hybrid methods which use some form of diffusion to accelerate
radiative transfer problems for which IMC alone would be prohibitively expensive. We now
analyze the differences and similarities between the new IMC/IMD hybrid method and
these other methods.

The first method we consider is the most straightforward: solving the diffusion equation
by a standard matrix solver rather than by using IMD. The probabilities used to advance
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the IMD particles are derived from a matrix representation of the differenced diffusion
equation. Thus, we could consider solving this matrix by employing an appropriate solver
rather than using IMD. This technique is the one described in [6].

As mentioned previously, Monte Carlo solution techniques for matrix equations are
more expensive than standard techniques[10]. Thus we would expect this approach to be
faster than the IMC/IMD hybrid in many cases. However, this speed advantage may be
lessened in some problems by the fact that the Monte Carlo method does not need to
obtain the entire solution. If IMD particles do not penetrate all the zones in a problem,
then no computation effort is expended there. IMD, in effect, only solves part of the matrix
equation. For a problem in which only a small amount of the diffusive region is actually
heated, we could see a speed advantage for IMD. Since the IMD method is particle based,
it should be easier to parallelize than a hybrid method that would require a parallel matrix
solver.

A drawback avoided by the IMD method is the possibility of negative fluxes from the
diffusion into the IMC. This problem is discussed in [6].

Next we consider two hybrid methods that use local (i.e., zonal or subzonal) solutions
of the diffusion equation to advance IMC particles in time more quickly than the IMC
algorithm. These are the so-called Random Walk method of Fleck and Canfield [12] and
the Discrete Diffusion method of Morel, Urbatsch, Evans, and others [13, 14].

The Random Walk method [12] proceeds as follows: the radius of the largest sphere
centered on the particle which is wholly contained inside the particle’s current zone is cal-
culated. This radius is equal to the minimum distance to any zone boundary. If this radius
is less than some number of mean free paths (usually on the order of 5–10), the particle
is advanced by the standard IMC method. If not, the particle’s behavior is considered to
be well approximated by diffusion. In this case, the diffusion equation is solved inside
this sphere, with a delta function in the center (the particle’s location) as the initial con-
dition and with the solution being zero on the sphere’s surface serving as the boundary
condition. This solution is obtainable analytically as an infinite series. It represents the
probability distribution for particles behaving diffusively which have not left the sphere.
Particles are advanced in time by sampling this distribution, and placed either inside the
sphere or on the surface. The particle’s energy is decreased, and new direction cosines
are assigned. (A discussion of the methods for generating direction cosines is provided in
[15] and [16].) The particle is in effect restored as an IMC particle. Then the process is
repeated.

It has been found that the accuracy of simulations using Random Walk is often improved
if particles are prevented from taking two Random Walk steps consecutively. In other
words, an IMC step must be taken between each Random Walk step. This is thought to
be because the direction cosines assigned to the particle after the Random Walk step are
not isotropically distributed. This means that the diffusion approximation is not strictly
applicable to the particle. Allowing it to take an IMC step allows a chance for the direction
cosines to become randomized through a scatter. This restriction was employed in the
Random Walk simulations described in the next section. Work on alleviating this restriction
by sampling particle position and angle from a distribution that more accurately represents
the results of transport in opaque media is described in [16].

The Random Walk method, like the IMD method, moves the particle in one jump to a
new location. This jump replaces the many particle trajectories that would be taken if the
particle was advanced by an IMC calculation. A Random Walk step is more expensive to
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calculate than an IMD step. This is because the IMD step uses precalculated probabilities,
while the Random Walk step needs to do a one-and two-dimensional table lookup to de-
termine the new position of the particle. It also takes more Random Walk steps to move a
particle out of a zone. This is because the new position of the particle is inside or on the
surface of the sphere constructed around the particle, and this sphere is entirely within the
zone. When the particle is near a zone boundary, the sphere will no longer have a radius
greater than a few mean free paths, and so at least one, and possibly several, IMC steps will
be taken before the particle crosses the zone boundary. IMD, by contrast, always moves the
particle to a neighboring zone in one step. The IMD method would be expected to be faster
than the Random Walk method because of the number of IMC steps taken by the Random
Walk method in diffusive regions. In the next section, we run a test problem comparing the
speed and accuracy of the Random Walk and IMD methods.

Discrete Diffusion Monte Carlo [13, 14] also uses a representation of the diffusion equa-
tion in a zone to advance a particle in time. Rather than using an analytic solution in a
convenient subzonal volume, as the Random Walk method does, it uses an approximate
solution over the whole zone. This approximate solution is obtained by assigning values
of the radiation energy density to the zone center and edges, imposing Marshak boundary
conditions at the edges, and manipulating the resulting equations to get expressions for the
outgoing fluxes at the boundary. Using these and a representation of the diffusion equation
integrated over the zone, an energy balance equation is obtained, which relates the out-
going fluxes, the source energy, and the absorption rate in the zone. This energy balance
equation is solved for probabilities similar to the ones in Eqs. (32)–(35). Unlike those ex-
pressions, however, the ones produced by Discrete Diffusion Monte Carlo involve only the
properties of the given zone; IMD probabilities involve quantities from neighboring zones
also.

The Discrete Diffusion Monte Carlo method has, as of this writing, been applied to
the time-independent diffusion equation [13] and the time-dependent equilibrium diffusion
equation [14], and only in one dimension. As it is similar to IMD, it will probably produce
similar results when applied to the nonequilibrium diffusion equation, Eq.(10). When this
occurs, a meaningful comparison of the two methods will possible .

Lastly, we consider the hybrid method of N’Kaoua [17], which is based on the Symbolic
IMC (SIMC) method of Brooks [18].

The IMC procedure evolved from an attempt to estimate the future matter temperature in
the source term of the radiative transfer equation. Symbolic IMC [18], rather than estimating
this term, regards it as an unknown. Monte Carlo particles are advanced, as in IMC, but have
unknown weights; the weight is a fraction of the unknowntn+1 energy of the zone from
which the particle is emitted. The result of advancing these particles is a matrix equation.
The elements in the unknown vector are thetn+1 zone energies. The elements of the matrix
are the net gains and losses obtained from emission and absorption of the particles. The
size of the matrix is equal to the number of zones in the problem squared. It has nonzero
elements connecting every pair of zones which have exchanged energy via particle transfer.
This matrix equation must then be solved to obtain the new matter energies.

N’kaoua [17] developed a hybrid method using SIMC. It essentially replaces some of
the elements of the matrix obtained by SIMC with elements derived from a discretiza-
tion of the diffusion equation. This replacement is done in regions where the diffusion
equation is an accurate approximation. This accelerates the SIMC method by replacing
a Monte Carlo calculation of the matrix elements in regions where it is expensive. As in
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the pure SIMC method, the matrix equation calculated by the hybrid method must still be
solved.

SIMC, and the hybrid method of N’kaoua, are both truly implicit in the matter tempera-
ture. Thus both avoid the problems with stability and accuracy described in [4]. This comes
at the cost of solving a matrix equation, which takes place after the Monte Carlo calculation.
Since this matrix has nonzero elements connecting zones which exchange particles, it could
conceivably be very dense where the mean free path of particles extends over many zones.
Solution of a dense matrix of this size, especially in a three-dimensional problem, could
be prohibitive. Although IMD employs the same estimate of future matter temperature as
IMC, and is thus subject to the time step restrictions described in [4], it does not require
solution of a matrix equation. This may make IMD more cost effective for many problems.

6. NUMERICAL RESULTS

We demonstrate that the IMC/IMD hybrid method produces a result essentially identical
to the result of a standard matrix inversion method, differing only in that it has, like all
Monte Carlo methods, some statistical noise. We then demonstrate the IMC/IMD hybrid
method on three problems which possess both opaque and nonopaque regions, for which
diffusion alone would be expected to produce an inaccurate answer, and for which IMC
alone requires a prohibitively large amount of computational resources. We also compare
the IMC/IMD hybrid method to the Random Walk method.

The first problem is the test problem from [7]. This test problem consists of a slab of
material with mass densityρ = 1, specific heatcv = 1, and opacityσa = 1 extending from
x = 0 to x = 10. A temperature source withTsource=

√
2 at x = 0 generates a Marshak

wave which penetrates into the initially cold slab, which has an initial temperature of
Tinitial = 10−5/2. The units were chosen such thatc = a = k = 1.

We compare the output of a pure IMD calculation to the results of a simulation using the
difference equations given in [7] and solved with a tridiagonal solver as in [9]. This is done
to demonstrate that the IMD method of solution produces the same result as the application
of a tridiagonal solver to the discretized diffusion equation given by Eqs. (23) and (24).
(As noted above, no flux limiter was used in either simulation.)

Figure 1 shows the radiation temperature at three different times during the calculation,
as calculated with IMD and with the method given in [7]. Figure 2 shows the matter
temperature. These figures plot the same variables as Figs. 1 and 2 in [7].

The two methods produce almost identical results. In this calculation, IMD was run with
10,000 particles. The IMD calculation took considerably longer than the calculation done
with the traditional finite difference method. (Both calculations took one minute or less on
a 533 MHz DEC alpha machine.) This is not surprising, as the tridiagonal matrix that the
difference method in [7] uses may rapidly be inverted. Monte Carlo matrix inversions are
usually much slower than traditional methods of inverting a matrix [10]. We are interested
in the speed-up we can attain over IMC calculations on problems for which diffusion cannot
be employed everywhere. We now examine two such problems, comparing pure IMC to the
IMC/IMD hybrid method.

The first hybrid problem is a one-dimensional Cartesian problem in which a region with
σa = .1 abuts a region withσa = 100. The low-opacity region extends fromx = 5 tox = 10
and is heated by a temperature source atx = 10 with a constant temperature ofTsource= 1.0.
The high-opacity region extends fromx = 0 to x = 5. A vacuum boundary condition is
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FIG. 1. Radiation temperatureTr vs. x for t = 0.1, 1.0, and 10 for the first test problem. A surface source
with T = √2 atx = 0 drives a Marshak wave in the direction of increasingx. Results from IMD are compared
to the results of a finite difference diffusion calculation. The two methods produce similar results.

imposed atx = 0. The initial temperature in both materials wasTinitial = 10−3, and the heat
capacity was 48T3. The units were chosen such thatc = a = k = 1.

In the high-opacity region, the scattering fraction= 1− f = .988 (independent of tem-
perature), so IMC particles in that region have a very small scattering mean free path. (This

FIG. 2. Matter temperatureT vs. x for t = 0.1, 1.0, and 10 for the first test problem. A surface source with
T = √2 atx = 0 drives a Marshak wave in the direction of increasingx. Results from IMD are compared to the
results of a finite difference diffusion calculation. The two methods produce similar results.
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value of f results from using a time step of1t = 10). We would expect that IMC would
be very expensive in the high-opacity region and that diffusion would be inaccurate in the
low-opacity region.

The problem has an approximate steady state solution. In the steady state,Em = E =
aT4. The temperature in the low-opacity region will approachTsource= 1. In the high-
opacity region, the matter and radiation energy densities will be equal and will satisfy the
time-independent diffusion equation

− ∂

∂x

[
D
∂E

∂x

]
= 0 (45)

on 0< x < 5, with E = 1 at x = 5 and D = 1/300. A vacuum boundary condition is
imposed atx = 0:

Ex=0+ 2D
∂E

∂x

∣∣∣∣
x=0

= 0. (46)

This yields the solution

E(x) = x + 2D

5+ 2D
(47)

for 0< x < 5. We can get the equilibrium value of temperature fromT(x) = E(x).25/a.
The problem was run with 110 zones, with zoning of1x = 1 for 0< x < 4 and 5<

x < 10. In 4< x < 5 there were 20 zones with geometrically decreasing size, with the
largest zone spanning the regionx = 4 to x = 4.0928033856. The time step1t = 10, and
the problem was run tot = 50,000. This was considered to be steady state because the
solution att = 100,000 was essentially the same as att = 50,000. The IMC calculation was
run with 25,000 particles per time step. In the hybrid simulation, the sum of the number of
IMC and IMD particles was 25,000 in each time step.

Figure 3 shows matter temperature for a simulation run with pure IMC, and with a hybrid
method with IMC particles run everywhere and IMD particles run in the high-opacity region
0< x < 5. Both methods show good agreement with the approximate analytic answer,
which is also shown.

The pure IMC calculation took approximately 1.057× 105 s, about 29.4 h. The hybrid
method took approximately 3800 s. (1.06 h), giving a speed-up of approximately a factor
of 27.8. Both calculations were run on a 533 MHz DEC alpha chip.

Figure 4 shows a plot of the number of particle steps taken by both methods. The pure
IMC method takes most of its steps in the high-opacity region, which spans zones 1 to 60. In
the hybrid calculation, many fewer IMC steps were taken in the high-opacity region. Since
each IMC step takes about the same amount of computer time, and the IMC steps are more
expensive than the IMD steps, the time of each simulation is approximately proportional to
the area under the curve representing the number of IMC steps taken. Thus the speed-up of
almost 28 times is understandable as a result of the fact that so many fewer IMC steps were
taken in the high-opacity material.

The statistical behavior of the hybrid method is examined in Fig. 5. Fig. 5 shows the error
in the temperature, and the variance in the temperature at three different spatial locations
in the problem, at the final timet = 50,000. The three locations are zone 1, atx = 0, at the
vacuum boundary in the diffusive region; zone 60, atx = 5, the diffusive zone which abuts
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FIG. 3. Matter temperatureT vs. x at t = 50,000 for the first hybrid test problem. A surface source with
T = 1 atx = 10 drives a Marshak wave in the direction of decreasingx. Results from a calculation using only IMC
are compared to results obtained from the hybrid method. Both calculations were done with 25,000 total particles.
The approximate analytic answer at several points is also shown. The two methods produce similar results and
agree well with the approximate analytic results.

FIG. 4. Number of particle steps vs. zone number for the first hybrid test problem. The number of steps taken
by IMC particles, which are the most expensive part of the calculation, is much smaller when the hybrid method
is used. Both calculations were done with 25,000 total particles.
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FIG. 5. Total error, and variance at three differentx locations, plotted vs. number of particles in the first hybrid
test problem. The error should be proportional to 1/

√
N, and the variance proportional to 1/N, whereN is the

number of particles. Curve fits show approximate agreement with this expected behavior. The error declines as
N−.43; the variance of zone 1 likeN−0.88; for zone 60, likeN−1.06; for zone 110, likeN−0.99. The overall value of
the variance for zone 110 is lower than that for the other zones because there are more particles in that zone since
it is near the temperature source.

the thin material; and zone 110, the zone in the nondiffusive region which abuts the tem-
perature source.

These quantities are plotted against the number of particles used in the calculation. The
particle number used in these calculations began at 1000 and was increased by a factor of
two, with the final value being 64,000. For each different number of particles, 10 runs were
done. The error was averaged over these 10 runs, and the variance inT at the three zones
was calculated. The error was approximated as the absolute value of the difference between
the value ofT and the approximate analytic value in every zone in the problem. This error
was averaged over the 10 runs.

The error should decline asN−1/2, where N is the number of particles. A fit of the error
curve in Fig. 5 shows that the error declines asN−.43. This value is slightly larger than
expected, probably due to the fact that there is a residual error in the calculation due to
zoning. That is, we cannot expect the error to decline likeN−1/2 for very largeN since
there is a minimum discretization error. The variance should decline likeN−1. For zone 1,
it declines likeN−0.88; for zone 60, likeN−1.06; for zone 110, likeN−0.99. These results are
consistent with the statistical behavior we expect from a Monte Carlo simulation. Thus, the
IMC/IMD hybrid method exhibits the behavior we expect from a Monte Carlo simulation.

In Fig. 6, we examine the effects of converting IMC particles to IMD particles in the
diffusive region of the problem. Figure 6 compares the three different results of the one-
dimensional hybrid test problem. In one case, IMC particles were never converted to IMD
particles. This is the result discussed above and used in generating the data pictured in
Figs. 3 and 4. In the second case, IMC particles reaching census in the diffusive region at
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FIG. 6. Matter temperatureT vs. x at t = 50,000 for the first hybrid test problem. A surface source with
T = 1 atx = 10 drives a Marshak wave in the direction of decreasingx. Results from three calculations using the
hybrid method are shown. In one, IMC particles in the diffusive region are tracked with IMC until they are killed
off through Russian rouletting or leave the problem. In another, IMC particles reaching census in the diffusive
region were converted to IMD particles in the next time step. In the third, IMC particles which scattered 50 times
in the diffusive region were converted to IMD particles in the current time step. All calculations were done with
25,000 total particles. All methods produce similar results.

the end of a time step were converted to IMD particles at the beginning of the next time step.
In the third case, IMC particles which scattered 50 times in the diffusive region without
leaving it were converted to IMD particles.

Figure 6 shows that all three cases produce similar results. The methods that convert
IMC particles to IMD particles complete the simulation faster. When IMC particles are not
converted, the simulation takes about 3800 s, when census particles are converted, it takes
about 1340 s, when IMC particles are converted after 50 scatters, it takes about 1100 s. This
is easily understood, since most of the time in simulations is taken up by advancing IMC
particles, and converting them to IMD particles means that fewer IMC steps are simulated.
Converting IMC particles into IMD particles gives approximately another factor of 3 speed-
up in the one-dimensional hybrid problem.

The second hybrid problem is used to compare the IMC/IMD hybrid acceleration method
to the Fleck and Canfield Random Walk acceleration method [12]. The problem has every
zone beginning atT = 1, with temperature sources withT = 1 at either end. This problem
has a simple analytic answer: the temperature stays atT = 1 everywhere at all times. This
problem is run on the same mesh as the first hybrid problem described above, and with the
same units. The material properties are the same, except that the opaque material has an
opacity of 500 rather than 100. This was done so that the opaque zones, most of which have
a length of 0.1, are more than 5 mean free paths across. Because of the restriction that the
size of the sphere the Random Walk algorithm uses be at least 5 mean free paths, Random
Walk would never be invoked in the problem if the opacity remained 100. No sphere of this
size could fit into the zones in the problem.
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FIG. 7. Matter temperatureT vs. x at t = 10,000 for the second hybrid test problem. Initial conditions are
T = 1 everywhere, and surface sources withT = 1 atx = 0 andx = 10 maintain this steady state. Results from
two calculations using the Random Walk method and the IMC/IMD hybrid method are shown. Both acceler-
ation methods reproduce the steady state solution with reasonable accuracy. The Random Walk method took
approximately 2.45× 104 s, while the IMC/IMD method took 450 s.

The problem was run with both the IMC/IMD hybrid algorithm and with IMC using the
Random Walk algorithm. The size of the spheres used in the Random Walk algorithm was
required to be 5 mean free paths or larger. Both simulations used 50,000 particles and were
run to t = 10,000 with1t = 10. Running this problem with IMC alone would have taken
a prohibitively large amount of computer time, so this was not done.

Figure 7 shows the matter temperature at the end of the simulation. Both methods produce
a solution that agrees reasonably well with the analytic solution. The calculation using
Random Walk took about 2.54× 105 s (about 6.8 h). The IMC/IMD hybrid took about
450 s, providing a speed-up of approximately 54.

The IMC/IMD hybrid algorithm is much faster than the Random Walk method on this
problem for two reasons. First, many more IMC steps are taken in the opaque material when
Random Walk is used than when IMD is used. This is because IMC steps are taken when
the particle is near the boundary of a zone, and because we have required that an IMC path
be taken between consecutive IMD steps. IMD particles quickly replace IMD particles in
the opaque regions and very few IMC steps are taken there. Second, more Random Walk
steps than IMD steps are taken in the opaque material. This is because a Random Walk path
will terminate in or on the sphere centered on the particle and will not get the particle out
of the zone. Many Random Walk and IMC steps are required to get a particle to leave a
zone. Each IMD path moves the particle to a neighboring zone. This effect on the relative
run times of the methods is enhanced by the fact that IMD steps are less expensive than
Random Walk steps, which require sampling from a table.

The reason the IMC/IMD algorithm is so much faster than Random Walk on this problem
is illustrated in Fig. 8. This figure shows the number of steps taken by particles in the two
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FIG. 8. Number of steps taken by particles using the different acceleration methods in the two simulations
of the problem pictured in Fig. 7. For the Random Walk simulation, the number of IMC steps and the number of
Random Walk steps are shown as solid lines. For the IMC/IMD hybrid simulation, the number of IMC steps and
IMD steps taken are shown as dotted lines. Many more IMC steps are taken in the opaque material when Random
Walk is used. The number of Random Walk steps taken is much higher than the number of IMD steps.

simulations. For the Random Walk simulation, it shows the number of IMC steps and the
number of Random Walk steps. For the IMC/IMD hybrid simulation, it shows the number
of IMC steps and IMD steps taken. Many more IMC steps are taken in the opaque material
when Random Walk is used, and the number of Random Walk steps taken is much higher
than the number of IMD steps.

The third hybrid problem is a two-dimensional problem developed by Frank Graziani
and Jim Le Blanc often referred to as the tophat problem [19]. In this problem a cylindrical
section of dense, opaque material is embedded in less dense, less opaque material, which is
itself embedded in a cylinder of the dense, opaque material. The outer region extends from
z= 0 to z= 7, and fromr = 0 to r = 2. Inside of this, the inner region of dense material
extends fromz= 3 toz= 4 and fromr = 0 tor = 1, and the region of less dense material
extends fromz= 0 to z= 2.5, and fromz= 4.5 to z= 7 with a radius of 0.5, and from
z= 2.5 to z= 4.5 with a radius of 1.5.

The dense material has a mass densityρ = 10 g/cm3 and an opacityσa = 2000 cm−1.
The less dense material hasρ = 0.01 g/cm3 andσa = 0.2 cm−1. Both materials have a heat
capacitycv = 1015 erg/g− keV.

A temperature source withTsource= 0.5 keV is applied at one end of the less dense mate-
rial. Vacuum boundary conditions are applied at all other boundaries. The initial temperature
Tinitial = 0.05 keV everywhere. Time units are such thatc = 300. The time step begins at
1t = 10−3 and is increased by a factor of 1.1 each time step until it reaches 1.0, and is held
constant at 1.0 thereafter.

This problem cannot be run accurately with diffusion alone because diffusion cannot
accurately model the flow of radiation around the corners. There is no analytic answer for the
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FIG. 9. T vs.t for the five fiducial points located in the thin material in the tophat problem. This plot compares
results from pure IMC, the IMC/IMD hybrid method, and an Sn calculation. The time step for the IMC and the
hybrid calculation was the same, but only certain times for the hybrid calculation have been plotted to make the
plot clearer. All three codes produce similar results. (The difference between Sn and IMC for the last point to heat
up is due to a lack of particles in the cold region of the problem. This lack of particles prevented this zone from
cooling off slightly before the thermal wave reached it.)

problem. The usual figures of merit are the matter temperature at five points in the optically
thin material. These points are:(r = 0, z= 0.25), (r = 0, z= 2.75), (r = 1.25, z= 3.5),
(r = 0, z= 4.25), and(r = 0, z= 6.75).

As time proceeds in this problem, radiation travels down the thin material and around
the section of thick material in the middle of the problem, and the thick material slowly
heats up. It is in the heated parts of the thick regions that IMC will be most computationally
intensive.

In Fig. 9 we have plotted matter temperature at the five fiducial points from the hybrid
simulation and the pure IMC calculation, as well as an Sn solution [20]. In this calcula-
tion, we have converted IMC particles which take 50 steps in the opaque region to IMC
particles, as described above. Both Monte Carlo calculations had 500,000 total particles per
time step. We see good agreement between all three simulations for all the points at most
times. Not all points for the hybrid simulation are shown, in order to make the plot less
cluttered.

The only notable area of disagreement in this plot is in the behavior of the point farthest
from the heat source. In the Sn simulation there is a small decrease in the temperature at
this point before the radiation wave begins to heat it. This does not occur in either Monte
Carlo simulation. This disagreement occurred because the IMC and hybrid calculations
were run with a variance reduction technique; particles were not allocated to zones that
were still at the initial temperature. The zone farthest from the heat source, which is near
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FIG. 10. T vs. t for the five fiducial points located in the thin material in the tophat problem. This plot
compares results from pure IMC to the IMC/IMD hybrid method. Results from three calculations using the hybrid
method are shown. In one, IMC particles in the diffusive region are tracked with IMC until they are killed off
through Russian rouletting or leave the problem. In another, IMC particles reaching census in the diffusive region
were converted to IMD particles in the next time step. In the third, IMC particles which scattered 50 times in the
diffusive region were converted to IMD particles in the current time step. All calculations were done with 500,000
total particles. All methods produce similar results.

the end of the problem, could actually cool off slightly before the radiation wave reached
it. The Sn calculation captured this transient, while the Monte Carlo calculations did not,
although they could have if that zone had been allowed to radiate. As soon as the radiation
reaches that zone, the effect of the cooling is quickly rendered unnoticeable, and all three
simulations show good agreement for this point thereafter.

In Fig. 10, we examine the effects of converting IMC particles to IMD particles in the
diffusive region of the problem. In one case, IMC particles were never converted to IMD
particles. In the second case, IMC particles reaching census in the diffusive region at the
end of a time step were converted to IMD particles at the beginning of the next time step.
In the third case, IMC particles which scattered 50 times in the diffusive region without
leaving it were converted to IMD particles. The three cases are compared to a pure IMC
calculation. Figure 10 shows that all three cases produce similar results.

At t = 100, the hybrid calculation where IMC particles were converted to IMD particles
after 50 steps took about 2.424 s (about 6.7 h). The hybrid calculation where IMC particles
reaching census in the opaque region were converted took approximately 1.83× 105 s
(about 51 h). With no conversion, the calculation took approximately 1.86× 105 s (about
52 h). The pure IMC took about 5.73× 105 s (about 159 h). Depending on which conversion
method is used, the hybrid method is faster by a factor of from 3 to almost 24. All simulations
were run on a 533 MHz DEC alpha.
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The reason that the conversion method affects the run time of this problem more than
the one-dimensional one is due to the energetics of the problem. The energy input from
the external temperature source and the radiating opaque matter during each time step is
large compared to the amount of energy in radiation. Many census particles are Russian
rouletted when they reach census, so that particles may be apportioned to represent the
energy from the sources at the beginning of the time step. This means that much of the run
time is spent advancing IMC particles in the opaque material to the end of the time step
in which they entered the thick material. So converting the relatively few particles which
survive the Russian rouletting to IMD particles in the next time step does not provide a
significant reduction in run time. Converting these IMC particles to IMD particles after
50 steps provides a significant decrease in run time because it converts the IMC particles
which take the most time to simulate into the less expensive IMD particles.

Figure 11 shows a contour plot of the matter temperature in the problem att = 10. The
top half shows the hybrid calculation (with conversion after 50 steps), while the bottom
shows the reflected results of the pure IMC calculation. (Note that these are two sepa-
rate calculations, whose results have been placed on the same plot by mapping the pure
IMC results to “negative” radius.) The contour lines are ten equally spaced lines between
T = 0.05 andT = 0.5 keV. The hybrid calculation shows less penetration of the thermal
wave into the thick material, but the agreement in the thin material is very good, and the
overall accuracy seems adequate.

We believe the smaller amount of heating in the thick material results from the fact that
the diffusion approximation is not accurate in the cold, thick material, because the scattering
opacity is small while the material is cold. The factorf given by Eq. (4) is approximately

FIG. 11. T at t = 100 for tophat problem. This plot shows matter temperature for every zone in the problem.
It compares results from pure IMC to the IMC/IMD hybrid. IMC/IMD hybrid results are shown on the top part
of the plot. Pure IMC results were mapped to “negative r” and are shown on the bottom part of the plot. Contour
lines are equally spaced between 0.05 and 0.5. The hybrid method underpredicts heating where the wave enters
the thick material but shows good agreement in the thin material.
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unity until the material heats up. A more accurate way of using the hybrid algorithm would
be to use IMD only in zones with smallf , rather than in all zones with a large opacity.

7. SUMMARY

We have developed a method for increasing the speed of IMC radiation transport calcula-
tions which contain regions where the opacity is large. This method employs a Monte Carlo
method of matrix inversion to solve the diffusion equation. We have dubbed the method
Implicit Monte Carlo Diffusion, which we abbreviate IMD. The IMD method employs par-
ticles which resemble the particles used in the IMC radiation transport method. Because of
this resemblance, the two methods can easily be combined into a hybrid method, in which
IMD is used in optically thick parts of the problem, where the diffusion approximation
provides an accurate approximation to the results of the transport equation. Since the IMD
method is considerably faster than the IMC method in these regions, the hybrid method
can run much faster than IMC alone on some problems. We have demonstrated this method
on one-dimensional Cartesian and two-dimensional cylindrical orthogonal mesh calcula-
tions. Test problems on these meshes show that the hybrid method is accurate and can
provide speed-ups greater than an order of magnitude. Future work will include extending
the method to 3D unstructured grids and to problems with frequency-dependent opacities.
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