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Implicit Monte Carlo (IMC) is often employed to numerically simulate radiative
transfer. In problems with regions that are characterized by a small mean free path,
IMC can take a prohibitive amount of time, because many particle steps must be
simulated to advance the particle through the time step. Problems containing regions
with a small mean free path can frequently be accurately simulated much more
quickly by employing the diffusion equation as an approximation. However, the
diffusion approximation is not accurate in regions of the problem where the mean
free path is large.

We present a method for accelerating time-dependent Monte Carlo radiative trans-
fer calculations by using a discretization of the diffusion equation to calculate prob-
abilities that are used to advance particles in regions with small mean free paths.
The method is demonstrated on problems with one-and two-dimensional orthogo-
nal grids. It results in decreases in run time of more than an order of magnitude
on these problems, while producing answers with accuracy comparable to pure
IMC simulations. We call the method Implicit Monte Carlo Diffusion, which we
abbreviate IMD. @ 2001 Academic Press

1. INTRODUCTION

The time-dependent transport equation for gray photons in the absence of scattering i
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wherecis the speed of lighty, is the macroscopic absorption cross section in inverse leng
units, andT is the matter temperature. The transport equation is coupled to the mate
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energy balance equation [1]

oE aT
aitm = pC,— = aa/ | d$2 — coaaT?. (2)

at
Here,E,, is the matter energy density in units of energy per volumis,the mass density,
andc, is the specific heat capacity in units of energy per mass per temperature. Th
equations can be solved by a Monte Carlo method described in [2]. The method discret
the problem on a mesh. Each zone has a temperature and an absorption cross se
Particles representing photons are created in the zones at the beginning of each time
according to the emission term in the transport equation. Then the photons are folloy
through the zones, which heats them according to the absorption term in Eq. (1). -
temperatures are updated at the end of the time step, using Eg. (2), and the proce
repeated.

This method becomes unstable when time steps of the order of

C
At = PGy
aT3co,
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are taken[3]. This instability occurs when the matter and radiation fields exchange an amc
of energy comparable to the amount of energy necessary to change the matter temper
a nonnegligible amount in one time step. If the matter is only able to absorb energy durir
time step, but is not able to reradiate, as in the algorithm in [2], then instabilities will occt
The inability of the matter to reradiate the energy it absorbs from the radiation during a ti
step is related to the fact that the temperature in the emission term of the transport equ:
is calculated using the temperature at the beginning of the time step.

A method for solving the photon transport equation with improved stability when larg
time steps are taken was provided by Fleck and Cummings [3]. The method was dub
Implicit Monte Carlo, usually abbreviated IMC. IMC works by using the matter energ
balance equation to estimate the future matter temperature, and using this estimate i
transport equation. This substitution has the effect of reducing the absorption opacity in
transport equation by a factor of

1

f= (4)
1+ BcAtoy

and adding an equal amount of thermally redistributed isotropic scattering. fHere
4aT?/pc,. This change allows the calculation to be run with much larger time steps befc
instabilities arise [4].

The factor f is small when photons are being absorbed and quickly reemitted by t
matter. Problems in which this occurs are said to exhibit tight coupling between the
diation and matter. IMC replaces the absorption and rapid reemission occurring in tigt
coupled problems with isotropic scattering. This scattering is usually referred to as
effective scattering, to distinguish it from physical scattering. The effective scattariag
(1- f)oa.

When the scattering, either physical or effective, is large, then the mean free patt
photons can be much smaller than a typical dimension of the zones in the discreti
mesh. IMC particles take many steps in these zones. Each simulated photon path in an
calculation is about equally expensive; thus, simulations with a large scattering cross sec
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can be very time consuming to calculate. The end result of applying the IMC algorithnr
to enable the use of much larger time steps, at the cost of making highly absorbing, tig
coupled problems as expensive to run as highly scattering ones.

When the factorf is small, most of the absorption opacity is replaced by an effectiv
scattering opacity which is isotropic. If the mean free path for this effective scattering
small, then the solution of the transport equation will be well approximated by the soluti
of the diffusion equation [5].

The diffusion equation describes the time development of the radiation energy den:
which is the zeroth angular moment of the intensity

0E
5 +V.-F =co,aT* - co,E, (5)

whereE, the radiation energy density, is defined by

1
E:E/IdQ, (6)

and the fluxF, the first angular moment of | is defined by

F:/fZIdQ. (7)

To allow us to calculate E from this equation, we must define F in terms of E. This
usually done by using Fick’s law,

F = —cDVE, ®)

whereD = 1/(30) is the diffusion coefficient.
The diffusion equation can be derived from the transport equation by taking angt
moments of the transport equation and taking the limit as the factor

ot mean free path
L ~ characteristic length of the flux

©)

becomes small [5]. The solution of the diffusion equation is an accurate approximat
to the first angular moment of the solution of the transport equation when the inten:
describes photons with a nearly isotropic angular distribution which is slowly varying
space and time. Thus, the diffusion equation can provide an accurate approximatior
highly scattering problems where IMC is prohibitively expensive.

The numerical solution of the diffusion equation is usually more rapid than the numeri
solution of the transport equation in situations where the diffusion approximation is appli
ble [1]. Since IMC is expensive where diffusion is accurate, solution techniques have b
developed that employ IMC in the parts of the problem with a small effective scatterir
and some form of diffusion in the parts of the problem with a large effective scattering [
These are referred to as hybrid methods.

A hybrid technique involves solving the diffusion equation on some regions of the g
and using IMC on other regions. The IMC simulation provides a flux that is used ac
boundary condition for the solution of the diffusion equation, which usually requires
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matrix inversion. The flux of energy out of the diffusion region is turned into particles use
by the IMC in the next time step.

This paper presents a new hybrid scheme, which is based on a Monte Carlo solution o
diffusion equation. This method uses the matrix resulting from discretizing the diffusic
equation to derive probabilities for particles to deposit energy, reach census, or jumy
another zone. Since this method involves a Monte Carlo solution that is similar to IM
and uses the same stabilization technique as IMC, we have dubbed it Implicit Monte C
Diffusion, which we abbreviate IMD.

The IMD particle can jump to a new zone in one step, rather than taking many IV
steps. Our method in effect rolls many expensive IMC steps into one very cheap IMD st
Thus the calculation proceeds much more rapidly in the diffusion region than it would if v
employed IMC there. Particles can freely cross the boundary between the diffusion rec
and the IMC region, and so the two methods are easy to couple together.

In the following sections, we develop the IMD algorithm and show how to make a hybr
IMC/IMD method. In Section 2, we describe the discretization of the diffusion equatio
In Section 3, we show how to solve the matrix equation obtained by this discretization
a Monte Carlo method which resembles IMC. In Section 4, we describe how to use
Monte Carlo diffusion method with IMC in a hybrid method. In Section 5, we compar
and contrast this hybrid method to other hybrid methods. In Section 6, we apply this hyk
method to various gray opacity test problems. We show that it can be considerably fa
than IMC alone on problems with very opaque regions, while yielding a similar result.

2. DISCRETIZING THE DIFFUSION EQUATION

We begin by considering the diffusion equation in Cartesian coordinates in a or
dimensional slab geometry, as derived in [7]. Our development will rely heavily on th
derivation. The diffusion equation under these assumptions is [7]

19E 9 [_9E
— — — — |D—| =0.aT*—04E. 1
cot  ax { ax} oad 7a (10)

We discretize this equation as in [7]. We talkeio be a zone-centered variable, and use
backward Euler time differencing. The result is

1 En+l —EN Fn+l _ ph+l
j PR Fe e
¢ At Ax = oaj(aT/" — E[™). (11)

Herej is a zone index, anfl + (—)1/2 indicates the face in the increasing (decreasing)
direction.
In zones with neighbors, we can dgetat the edges by discretizing Fick’s law as

n+1 n+1
Eiti — Ej

FMLl = cD; 12
i+1/2 j+1/2 ij+1/2 ( )
where
DD
Dj+l/2 = 2AXJ'+1/2 1=+ (13)

DjAXjy1+ Djr1AX;
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and
AX]+1/2 = (AX] + AX]+1)/2. (14)

(As noted in [7], the harmonic average given in Eq. (13) will yield a small value for th
face diffusion coefficient in cases where either zone has a small diffusion coefficient. T
can occur in problems with temperature-dependent opacities that are large in cold me
A small diffusion coefficient leads to a small flux via Eq. (12); thus, the diffusion of he:
into cold, opaque material may be unphysically retarded. In [7], a means of dealing w
this problem is outlined: essentially, the valuesbemployed in face calculations such
as Eq. (13) are calculated using a common temperature derived from the temperatur:
the neighboring zones. In this paper, this issue does not arise, because we have run
simulations with temperature-independent opacities.)
For the two edges at the ends of the problem, weFgétom the boundary condition

given in [7],

F=%[E+2Dﬁ-VE], (15)
wherefi is the outward normal at the edge.

(We should note an issue, described in [7], that arises in the calculation of the diffus
coefficientD. This is the use of a flux limiter to prevent superluminal energy transport |
regions with a small opacity. Several flux limiters and their effects are considered in |
Flux limiters are not used in the IMD method, because IMC is used in the places where
flux limiter would be employed in a diffusion approximation. This is discussed further |
the next section.)

The source term in Eq. (11) depends on the current matter tempefdturather than
the future matter temperatufé+*, which would make the time differencing fully implicit.
This can affect the quality of the solution, as discussed in [7]. This dependence on
current matter temperature rather than the future matter temperature is what led to the
step restriction given by Eq. (3) in the Monte Carlo solution of the transport equation.

This problem is addressed in [7] by iterating on the matter temperature, but that requ
multiple matrix inversions per time step. Instead, we choose to solve it in the same mar
employed to stabilize the IMC algorithm. We will use the matter temperature equatic
Eq. (2), to get an estimate of the future matter temperature, and use that estintaie for
the 0,aT* term in Eq. (10). Our development will closely follow that in [3], and has the
same purpose—to allow us to use larger time steps in our simulation without encounte
instability.

We begin by defininde, = aT# and using the chain rule to relate the time derivative o
E, to that of E,:

0E, _ 9E, 9En

= . 16
ot 0Em ot (16)
We use the chain rule again to get an expressiod Epy/d En,, which is
0E c,0T /ot C,
P /ot p _ 5. (17)

dEm 4aT33T/ot  4aT3
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whereg is defined as in Eq. (4). Substituting these last two results, and the definitin of
given by Eq. (6), in Eq. (2), we get an expression for the time derivatig pf

d Er
ot

Next, we difference Eq. (18) by backward Euler to get an expression for the future va
of E;:

= BCoE — Bco,E. (18)

EMt = B! + At [BcoaE — Bcoa BN . (19)
Collecting terms containing"*! yields
EM(14 BcAton) = E! + BcAtogE, (20)
and solving this folE"** results in
EMt=fE' + (1 DE, (21)

where f is the same factor, defined by Eq. (4), that is employed in IMC.
Finally, using the definition o, asaT*, we useE""! as the estimate f@T*in Eq. (10).
The result of this substitution is
19E 9 [DaE} = fo.aT*— foaE, (22)
aX
whereT is regarded as thg value. As in IMC, this transformation results in effective
isotropic scattering, which shows up in the diffusion coefficient. In the presence of scatteri
D is defined in terms of the sum of the absorption and scattering opacities, so its ve
remains unchanged.

This transformed diffusion equation could also have been derived by starting with t
transport equation as modified by IMC, integrating over angle, and applying Fick’s la
This derivation would parallel the one in [5] with a factor bfmodifying o, everywhere
and a scattering opacity 61 — f)o, in the transport equation.

We now difference Eq. (22) in time. The result is Eq. (11), with the addition of factor
of f multiplying the source terms on the right-hand side. Using the definitions of the flt
from Eq. (12) and collecting coefficients results in

At Dj At Dj At Dj_
L+ catfion; + o AL izt oA Disva] gnia o A Diae oy
AXj AXj_12 AXj AXji12 AXj AXj_12
At Dj
—c— 2 EML — cAtfo, jaTM + E). (23)
AXj AXjt1/2

At the x = 0 boundary, we get a similar equation reIatiElQJrl and EQ“ by using a
difference formulation of Eq. (15) fd1'=”l/2 and inserting the resultinto Eq. (11). The result
is

n+

1+ CAtf10a1+C

At 3/2D1031 c At D3/2 En+1 c 2= At D3/2
AX1 1+ 3AX104 1/4 AX]' AX3/2 ! AXq AX3/2

3/2D10a1 Fo
1+ 3AX1041/4 CAX]_.

=cAtfo,aT™ + E} + 4 { (24)
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In this equationfy is the flux through the boundary at= 0, which adds energy into the
source term in zone 1. A similar equation is obtained aixtke xnh,x end of the problem.

The equation defining"** in terms of the neighboring valué’éj‘ﬁ and E?ﬂ is a matrix
equationAx = b, with the ET” the components of the unknownand the source terms
the components df. The matrix A is tridiagonal and can easily be solved by standart
techniques [9]. In the next section, we outline a Monte Carlo technique for solving it.

Inamanner similar to that applied above, we can get a matrix equation for a zone-cent
discretization of the diffusion equation in cylindrical coordinates in a two-dimensional a
ially symmetric geometry on an orthogonal mesh. Employing the usual five-point diffe
encing scheme results in a similar set of equations which has five off-diagonal bands.

In both the Cartesian one-dimensional and the orthogonal cylindrical case, the me
energy density satisfies the same equation:

E
aa_tm = faa/ 1dQ2 — cfo,aT?. (25)
This is the same equation satisfied by the matter energy density in the IMC formulatior
The change in the matter energy density given by Eq. (25) is the difference between
energy thermally radiated by the matter and the energy absorbed from the radiation fi
Often this equation is solved by introducing the heat capacity and writing

aT
Peor = foa / 1dQ — cfoaaT? (26)

which can be differenced and solved for the temperatucg i$§ assumed constant. This
difference equation only conserves energy, ifs actually constant. We prefer to difference
Eq. (25) as

E[?,]Jrll = EQ] i + Eabsorbed i— AthjO'a jaTj“4, (27)

where Eapsored jiS the amount of energy absorbed by the matter from the radiation fie
and is obtained from the solution of the diffusion equation.

Using Eq. (27)E{]‘q+jl is solved for the new matter energyt&t®, which can be numerically
inverted using the equation of state to obtain the new matter tempefeitie

3. SOLVING THE DISCRETIZED DIFFUSION EQUATION
BY A MONTE CARLO TECHNIQUE

The matrix equations arising from the discretizations of the one-dimensional Cartes
and the two-dimensional orthogonal cylindrical diffusion equations are similar. In bo
cases, the diagonal element consists of the sum of the following terms: unity, arising fr
the time derivative terngAt f o,, arising from the absorption term; and several terms, on
for each neighboring zone, involving the diffusion coefficient and geometric factors, whi
arise from the flux term. The off-diagonal elements are the negatives of these diffus
coefficient terms. Both matrices are diagonally dominant, and symmetric, and hence
symmetric positive definite.

The source terms are the same in both cases, consisting of the sum of the old en
density in the zon&|' and a source term depending on the temperatuyef o.aTs.
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Here, we derive a Monte Carlo solution technique that is applicable to both the ol
dimensional and the two-dimensional discretized diffusion equations (and is in fact ap
cable to any symmetric matrix equation in which the sign of the diagonal is the oppos
of the sign of the off-diagonal terms.) Our derivation employs Eq. (23) above, but tl
generalization to the two-dimensional case, and other matrixes, is clear.

If we take the matrix equation defined by Eq. (23) and solve itEprl, we obtain the
following relation which defines the radiation energy density in zprie terms of the
radiation energy density of neighboring zones and the energy of the source i asne

Eftt = EM I + Bl + Elouce /) (28)

source |

where we have made several definitions. The source energy injzsrefined as

Eldouce | = Ej + CAtfjoq jaT™; (29)

source j —

the diagonal term of the matrixi,j , Which is the coefficient oE}1+1 in Eq. (23) is defined
as

A At Dj At D;
dj = |1+ cAtfjon j + c— 2 c”l/z}; (30)
AXj AXj_1/2 AXj AXjii/2
and the off-diagonal terms are defined as
- At Dj -
o o2 [d, (31)
AXj AXjt1/2

with f defined similarly. We also defif&q = > E i Source | 1Nhe symmetry of the matrix
is expressed by the fact théaf = 1, andf; = 1,

We now describe a Monte Carlo techmque that can be used to solve Eq. (28) above, w
is equivalent to solving the matrix equation Eq. (23) from which it was derived. Then v
will show that the estimate de?*l obtained by this technique approaches (in the limit of
many particles) the solution of Eq. (28) and hence of Eq. (23).

The Monte Carlo solution technique requires that the following probabilities be define
The probability that a particle created in zopwill jump to zonej + 1is

P = fr/d;. (32)

The probability that a particle created in zopwiill jump to zonej — 1is
P = f]/dj. (33)

The probability that the energy of a particle will be tallied into the array representing t
solution of Ef** is

Pe = 1/d;. (34)

The probability that the energy of a particle will be tallied into the array representing t
solution ofE{,‘ﬁjl, the matter energy density, is

P? = copAt/d; =1— P — P/ — Pf. (35)
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The expressions defined in Egs. (32)—(35) all satisfy the requirement that they be gre
than or equal to zero and less than or equal to unity, and they all add to unity. This car
easily demonstrated. Since the diffusion coefficiext, and theAt are all positive,f is
positive. Since the factof defined by Eq. (4) and the absorption opaeityare positive,
every term ind is positive. The probabilities defined by Egs. (32)—(35) are ratios of positi\
numbers and so are greater than zero. All are ratios of some fractibtoaf, and so they
are all less than or equal to unity. Summing them vyields unity. Thus the terms defined
Egs. (32)—(35) meet the requirements that probabilities must satisfy.

The Monte Carlo solution technique begins with the creation of a total nuibefr
particles distributed among the zones of the mesh. The number of particles created in .
JisNj = NEJ e i/ Etotal- Each particle created in zofdas energ¥paricle = Esource j/

N;. The sum ofEparicie OVer all particles and zones Eqai, SO energy is strictly conserved
during creation of the particles.

Each particle now undergoes one of four processes. It can jump tojzerewith a
probability P;*, or it can jump to zong — 1 with a probabilityP;". Its energy can be tallied
into E?*l with a probabilityP7. We refer to this event as census, because it will be seen
be analogous to the census event in the IMC algorithm. Or the energy of the particle
be tallied into another variablEapsorbed jWith probability PJ-"". Eabsorbed jWill be seen to
be the energy absorbed by the matter in zpn&he determination of which of the four
alternatives occurs is done by comparing a random number to the probabilities.

If the particle jumps to a new zone, we continue the process, using the four probabili
for the new zone. If the particle tallies into eithéj’+1 or Eabsorbed j OF leaves the problem
through the ends, we are finished advancing it. A particle leaves the problem when it i
the first zonej = 1, and the particle is determined to jump to zgne 1, or it is in the last
zonej = jmaxand it is determined to jump to zonet 1. When all the particles are either
tallied or have left the problem, we are through with the time step.

When we are through with the time step, we have computed two numbers for e:
zone by the Monte Carlo procesE.;1+1 and Eapsorbed E?“ is the estimate for the new
radiation energy density in the zone, and is used as the initial condition for the new ti
step.Eabsorbed jis the amount of energy absorbed by the matter in the zone. The net ene
change of the matterin the zone is tigsomed j— CAtfjoa ,—aTj“"'. This netenergy change
is used along with the equation of state to get the new temperﬁiﬂiﬂeof the material.
This gives us all the information we need to repeat the process and do another time st

We now show that the expected valuelz‘cjf”, which we denotQE;‘“), obtained from
this algorithm satisfies Eq. (28).

The expected valueE?) satisfies

J
(E*™*) = PF lim_EpanceN; (36)

whereN; is the number of particles that pass through the zoreparticle in zonej must
either be born in zong¢ or jump there from another zone. This implies that

] l+] N ] 1 J_: ] 1 born

Nborn = Niotal Esource j/EtotaI = Esource j/ Eparticle‘
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Using these relations, we obtain
<E?+1> = ch Pj:,-l Nlinoo EparticIeNj+l + ch Pjtl Nlﬂqoo EparticIeNjfl + ch Esource J (37)

Using the symmetry of the matrix, the terms involving the products of probabilities satis

—h,

"+
U

—h,

B - d ~
Pli=g =34 =P P/Pu (38)
j Yj-1

Q,
|

i
Q,

which leads taP;" , P¢ = P;” PF. Similarly, P, Pf = P, P;".

Using these relations, and the definitionRﬁ = 1/d;, we find that
(Ef*Yy =P/ N|[noo Py'.1EparticleNj+1 + P Nlinoo P/ 1 EparticleNj -1 + Esource ydi. (39)
Using the definition of the expected value, this becomes
(E7*) = P (ERD) + P (ETD) + Baauee /). (40)

The expected values for the energy produced by the algorithm satisfy the differel
equation Eq. (28) we WisE;‘Jrl to satisfy. Thus, we can take the results Eﬂ*l we get
from the Monte Carlo simulation, which are obtained with a finite number of particles, as
approximate solution of the equation. Since E‘ﬁé‘l represent the photon energy in zone
j attimen + 1, the tally of a photon int(E?Jrl is analogous to an IMC patrticle reaching
census. On the next time step, the valuesEf@S*r=l become theEJn used in the source term.

A similar calculation shows that Eq. (24) can be manipulated to give probabilities tr
hold in zone 1, and that these give rise to expectation values that satisfy Eq. (24).
probabilities for zone 1 are derived by dividing the equation by the diagonal term, just
they are in the case of Eq. (23). In particular, the valu@,ofthe probability that the particle
leaves the problem though the boundary at 0, comes from the term in the denominator
that arises from the boundary term in Eq. (24):

_ At 3/2 Dlaa 1 ~
_5/2Dwo1 / d.

Pl =c— 41
! AXy 1+3AX;|_U,31/4 ( )

A similar term arises at the = Xmax boundary. We tally the energy of particles that leave
the problem into the variablBescaped

The IMD particles collectively carria, and they deposit energy in a conservative way
This imP“eSZj Eabsorbed = Etotal — Zj E?Jrl - Eescaped Eabsorbed j,the energythatis not
tallied into census, must therefore be the amount of energy that was absorbed by the m
in each zone. This energy is used to solve the matter energy balance Eq. (27) to obtair
new matter temperatuig™**.

The algorithm in the two-dimensional orthogonal case is exactly the same, except
there are probabilities of jumping to four neighboring zones rather than two. The probal
ities of jumping in the two-dimensional case are given by dividing the flux by the diagon
term, just as in the one-dimensional caB&.and P2 are given by the same expressions as
in the one-dimensional case.

Applying the Monte Carlo solution technique above to the matrix equations produce
very simple, easy to code algorithm with a very physical interpretation, and which resemt
IMC very closely.
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The Monte Carlo diffusion procedure begins by starting some number of particles

each zone. The weight of each particle in a zone is the value of the source term in that :
divided by the number of particles in that zone. The source terf is cAtfjoa ,—aTj”“.
E]f‘ is the radiation energy at time which corresponds to the photons in census in an IM(
calculation, whilecAt fjo, ,—aTjn4 is the energy radiated from the matter in that zone, jus
as in an IMC calculation. So our particles have weights, interpretable as the energies
IMC particles generated in the zones would have had. We will refer to these particles
IMD particles.

IMD particles are advanced by drawing a random number and comparing it to the pr
abilities derived from the matrix. The probability of reaching census, i.e., contributing
E?*l, is 1/d}. If this event occurs, the particle’s energy is tallied into the variable holdin
E}‘*l. The probability of absorption isAtf; o, ;. If this event occurs, the particle’s energy
is tallied into the variable holding the amount of energy absorbed by the matter in that z
from the radiation field. The probability of jumping to a new zdrie f | «/d;, the ratio of
the fringe term associated with zokeo the diagonal of the current zorjeIf this event
occurs, the particle is moved to zokega new random number is drawn, and the patrticle i
advanced again using the probabilities from zkne

As a variance reduction technique, we can use a path length estimator for the census
absorption events, rather than the last event estimator described above. In the last «
estimator, we tally all of the energy of the particle into census or absorption if that is t
event selected, and stop advancing the particle. In the path length estimator, we tall
amount equal to the probability of census and absorption multiplied by the particle’s ene
on each step. Then we subtract the tallied energy from the particle’s energy. The par
continues to move indefinitely with a decreasing energy. To prevent wasting computatic
resources on particles with small weights, the particle is terminated when the weight rea
some small fraction of the initial weight. The result of using this variance reduction meth
is smoother results for the same number of particles. We have @&ed the initial energy
as the termination energy in the calculations described in Section 6.

IMD, as a Monte Carlo method, produces a solution with statistical noise in it. This ¢
impact the solution of discretized diffusion equations with flux limiters.

As discussed in [7] and [8], flux limiters use some approximation of the slope of tl
energy to modify the value of diffusion coefficieBt when|VE|/E is comparable t@.
This occurs whem is small or when the radiation energy is changing rapidly, which i
when the diffusion approximation is not applicable. Flux limiters are essentially a w
to employ diffusion in regions where a full transport solution would be more appr
priate.

Flux limiters causeD to depend nonlinearly oW E. This nonlinearity would prevent
formulating the discretized diffusion equation as a matrix equatiot!] salues forE are
often used. Iteration is also sometimes employed.

When IMD is used to invert the matrix, the statistical noise in the values obtained 1
E will make the calculation oV E used in the flux limiter inaccurate. This makes the
IMD algorithm a poor choice for solving flux-limited diffusion equations, although on
might be able to use it if some kind of smoothing was imposed on the values usec
calculateVE. IMD is useful when coupled to IMC in a hybrid method. Then IMC can be
used where the transport equation is more appropriate (i.e., where a flux limiter would
needed), and IMD can be used without a flux limiter where the diffusion approximation
accurate.
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Inthe calculations described in this paper, we have employed the diffusion approximat
only in regions withr so large that a flux limiter would not be expected to modify the value
of D. Experimentation confirmed that the flux limiter given above did not modify the valu
of D obtained fromD = 1/(30). The hybrid results presented in Section 6 were not rul
with a flux limiter in IMD.

Advancing the IMD particles is very similar to advancing IMC particles. They botl
deposit energy in the matter, and reach census. Their tracking behavior is much simj
however. IMD particles do not have a position in the zone, a time within the time ste
or direction cosines. They are spatially associated with the whole zone and tempor
associated with the whole time step. This is because the diffusion equation results fron
integration over angles, and the discretization that produced the matrix employed zone
time average quantities.

In a zone in which the effective scattering is large, an IMC particle will perform man
scatters. Each scatter is relatively expensive, requiring among other things, a calculatic
the distance from the IMC particle’s current location to the zone boundary, the computat
of a natural logarithm to determine the distance to a scatter, and several ‘if’ tests to detern
the particle’s fate. Advancing an IMD particle is much cheaper, because this distance
boundary calculation is not needed, and because the particle always leaves the zone du
step. In effect, many expensive IMC steps can be replaced by one inexpensive IMD ste
the cost of replacing the solution of the transport equation with the solution of the diffusi
equation. If some region of the problem has a large effective scattering, we may be will
to make this tradeoff, since the increase in speed may be quite large, while the decrea
accuracy may be tolerable. In the next section, we describe the IMC/IMD hybrid meth
In the Section 5, we compare the IMC/IMD hybrid method to other hybrid methods.
Section 6, we will demonstrate the IMC/IMD hybrid method on three test problems a
examine the results in terms of accuracy and performance.

4. AN IMC/IMD HYBRID METHOD

Hybrid algorithms, with IMC and diffusion running in the same problem, have bee
described in the literature [6]. In these hybrid algorithms, part of the problem is run wi
IMC, and the part with a large effective scattering, which would be prohibitively expensi
to run with IMC, is run with diffusion. Dividing the problem up in this way means selectin
the zones in which diffusion is an appropriate approximation, and forming a matrix equat
on each contiguous set of these zones. IMC particles are advanced through the zone
selected as diffusion zones.

The similarity of IMD with IMC makes it easy to mate the two. The problem is divided intc
IMD and IMC regions by identifying zones where the diffusion approximation is acceptab
Since IMC patrticles are simulating the transport equation, which is accurate even in
diffusive region, we can allow IMC particles to penetrate freely into these regions. T
IMC region does not provide a flux for the diffusion calculation, so no problems involvin
negative probabilities of reflection result. These negative probabilities arise in the hyk
method described in [6]. Since there is no flux into the diffusion region at its boundary
vacuum boundary condition is imposed there.

The matter in the problem radiates because of its temperature. In the IMC regions,
radiation is modeled as a source of IMC particles. In the IMD regions, IMD particles a
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radiated. Since IMC particles can travel into IMD regions, they may deposit energy ir
the matter in IMD regions. Thermal emission from these zones in subsequent time stej
done by emitting IMD particles.

In effect, we are solving the transport equation with a source from the matter temperal
in zones which are not diffusive:

131 - co,aT?

—— 4+ Q-VI = —0g,l
catJr al + A

(42)

In zones which are diffusive we are solving the transport equation without a source,

101 4

as well as the diffusion equation with a matter temperature source

dE
- - [Dax] = 0,aT* — o,E. (44)

In diffusive regions, where both IMC and IMD particles are being advanced, the radiati
energy density is the sum Bf, solved for in the diffusion equation, and the angularintegral o
I, solved for in the transport equation. This representation is consistent since both equat
are linearinthe energy variable. Both IMC and IMD particles contribute to heating the mat
in the diffusive regions. This is consistent since the equation for the rate of change of me
energy density, Eq. (2), is linear in the angular integral .ofust as these linearities allow
the IMC algorithm to treat IMC particles as independent of one another, they allow us
treat IMC and IMD patrticles as independent.

When an IMD patrticle jumps from a zone in the diffusive region into a zone in the IM
region, it is converted into an IMC particle at the boundary between the zones. The Il
particle has an energy equal to that of the IMD patrticle. A location on the interface betwe
the zones is calculated stochastically, as it would be for a source particle created on
interface by, for example, a temperature source. Direction cosines are generated fron
cosine distribution, and a time betwegrandt"** is randomly assigned to the particle.

Since there is no natural time associated with IMD particles, we have chosen to as:
a random time to the IMC particles that result from the conversion of IMD particles. Tl
selection of a random time for the newly created IMC particle is consistent with the us
treatment of surface fluxes in IMC codes. IMC particles generated from surface fluxes
evenly distributed over a time step, and the IMD particles that are converted are actin
a surface flux for the IMC. This is also the way times are assigned to IMC particles in 1
hybrid method in [6].

When running an IMC simulation, we usually attempt to keep the total number of IM
particles constant. In a hybrid simulation, we attempt to keep the sum of the total num
of IMC and IMD particles constant by apportioning particles between IMC and IMD i
the same ratio as the sum of source and census energy of the IMC and IMD particles.
apportionment does not prevent conservation of energy, because we do not demand th
energy of the IMC and IMD particles be exactly the same. However, we do perform Russ
rouletting of IMC particles when they are brought out of census, in order to apportion t
available IMC particles between census particles and source particles. This procedure
cause conservation of energy to be statistical rather than exact. We keep track of the er
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created or destroyed by this process. Including this energy allows us to calculate ene
balance for the whole code, and we find that this is conserved to one paffim &l the
simulations presented in this paper.

Although the IMC patrticles will contribute to an accurate solution of the transport equ
tion in regions of high effective scattering, they are still expensive to track in these regio
We might wish to convert IMC patrticles to IMD particles to reduce the cost of the calc
lation. We have experimented with two methods for converting IMC patrticles into IMI
particles in diffusive regions.

The first is to convert IMC particles that reach census in diffusive regions into IM
particles in the next time step. That is, when these particles are brought out of census,
are converted to IMD particles rather than tracked as IMC particles.

The second is to convert IMC patrticles into IMD particles sometime after they cross ir
a diffusive region. We do not convert them immediately because this would represer
flux into the diffusive region, and we have imposed a vacuum boundary condition on
interface of the diffusive region. Also, many IMC particles entering the diffusive region wi
scatter back out. If we converted IMC particles into IMD patrticles immediately, many of tt
IMD particles would come out and have to be converted back into IMC particles. Multip
conversions from IMC to IMD and back are expensive. So we want to convert IMC particl
to IMD particles only after we have given them a chance to scatter back out of the diffus
region. We do this by converting IMC particles only after they have scattered a cert
number of times. We have found by experiment with several test problems that convert
IMC patrticles in IMD regions to IMD particles after they take 50 IMC steps without leavin
the diffusive region produces good results with a useful reduction in the run time.

We wish to emphasize that the conversion of IMC particles to IMD particles is not
necessary part of the hybrid IMC/IMD algorithm. It is an attempt to make the algorith
faster by reducing the number of expensive IMC steps taken in the diffusive region
problems. In particular, the conversion of IMC particles in diffusive regions after 50 steps
not an attempt to use the Nth collided intensity approximation [11], although it appears
be similar. The value of 50 scatters has been determined by experiment and may be prol
dependent.

We show in Section 6 that the hybrid method without conversions, and with the two me
ods of conversion discussed here, produces essentially the same answer on test probl

IMC particles can travel through all zones of the problem within a radiaatofrom their
point of origin. IMD patrticles can, by converting into IMC particles, also travel throughot
the problem. Thus, all zones in a problem which are causally connected can exche
particles, even if they are in diffusive regions separated by IMC regions. These regions
coupled together implicitly.

5. COMPARISON TO OTHER HYBRID METHODS

There are several existing hybrid methods which use some form of diffusion to accelel
radiative transfer problems for which IMC alone would be prohibitively expensive. We nc
analyze the differences and similarities between the new IMC/IMD hybrid method a
these other methods.

The first method we consider is the most straightforward: solving the diffusion equati
by a standard matrix solver rather than by using IMD. The probabilities used to advatr
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the IMD particles are derived from a matrix representation of the differenced diffusi
equation. Thus, we could consider solving this matrix by employing an appropriate sol
rather than using IMD. This technique is the one described in [6].

As mentioned previously, Monte Carlo solution techniques for matrix equations &
more expensive than standard techniques[10]. Thus we would expect this approach t
faster than the IMC/IMD hybrid in many cases. However, this speed advantage may
lessened in some problems by the fact that the Monte Carlo method does not nee
obtain the entire solution. If IMD particles do not penetrate all the zones in a proble
then no computation effort is expended there. IMD, in effect, only solves part of the mat
equation. For a problem in which only a small amount of the diffusive region is actua
heated, we could see a speed advantage for IMD. Since the IMD method is particle ba
it should be easier to parallelize than a hybrid method that would require a parallel ma
solver.

A drawback avoided by the IMD method is the possibility of negative fluxes from tt
diffusion into the IMC. This problem is discussed in [6].

Next we consider two hybrid methods that use local (i.e., zonal or subzonal) solutic
of the diffusion equation to advance IMC particles in time more quickly than the IM
algorithm. These are the so-called Random Walk method of Fleck and Canfield [12]
the Discrete Diffusion method of Morel, Urbatsch, Evans, and others [13, 14].

The Random Walk method [12] proceeds as follows: the radius of the largest sph
centered on the particle which is wholly contained inside the particle’s current zone is
culated. This radius is equal to the minimum distance to any zone boundary. If this rac
is less than some number of mean free paths (usually on the order of 5-10), the par
is advanced by the standard IMC method. If not, the particle’s behavior is considerec
be well approximated by diffusion. In this case, the diffusion equation is solved insi
this sphere, with a delta function in the center (the particle’s location) as the initial cc
dition and with the solution being zero on the sphere’s surface serving as the bounc
condition. This solution is obtainable analytically as an infinite series. It represents
probability distribution for particles behaving diffusively which have not left the spher
Particles are advanced in time by sampling this distribution, and placed either inside
sphere or on the surface. The particle’s energy is decreased, and new direction co:
are assigned. (A discussion of the methods for generating direction cosines is provide
[15] and [16].) The particle is in effect restored as an IMC patrticle. Then the process
repeated.

It has been found that the accuracy of simulations using Random Walk is often impro
if particles are prevented from taking two Random Walk steps consecutively. In ott
words, an IMC step must be taken between each Random Walk step. This is thougt
be because the direction cosines assigned to the particle after the Random Walk ste
not isotropically distributed. This means that the diffusion approximation is not strict
applicable to the particle. Allowing it to take an IMC step allows a chance for the directi
cosines to become randomized through a scatter. This restriction was employed in
Random Walk simulations described in the next section. Work on alleviating this restricti
by sampling particle position and angle from a distribution that more accurately represe
the results of transport in opaque media is described in [16].

The Random Walk method, like the IMD method, moves the particle in one jump tc
new location. This jump replaces the many particle trajectories that would be taken if
particle was advanced by an IMC calculation. A Random Walk step is more expensive
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calculate than an IMD step. This is because the IMD step uses precalculated probabili
while the Random Walk step needs to do a one-and two-dimensional table lookup to
termine the new position of the particle. It also takes more Random Walk steps to mov
particle out of a zone. This is because the new position of the particle is inside or on
surface of the sphere constructed around the particle, and this sphere is entirely within
zone. When the patrticle is near a zone boundary, the sphere will no longer have a ra
greater than a few mean free paths, and so at least one, and possibly several, IMC step
be taken before the particle crosses the zone boundary. IMD, by contrast, always move:
particle to a neighboring zone in one step. The IMD method would be expected to be fa:
than the Random Walk method because of the number of IMC steps taken by the Ran
Walk method in diffusive regions. In the next section, we run a test problem comparing 1
speed and accuracy of the Random Walk and IMD methods.

Discrete Diffusion Monte Carlo [13, 14] also uses a representation of the diffusion eq
tion in a zone to advance a particle in time. Rather than using an analytic solution i
convenient subzonal volume, as the Random Walk method does, it uses an approxir
solution over the whole zone. This approximate solution is obtained by assigning val
of the radiation energy density to the zone center and edges, imposing Marshak boun
conditions at the edges, and manipulating the resulting equations to get expressions fo
outgoing fluxes at the boundary. Using these and a representation of the diffusion eque
integrated over the zone, an energy balance equation is obtained, which relates the
going fluxes, the source energy, and the absorption rate in the zone. This energy bal
equation is solved for probabilities similar to the ones in Egs. (32)—(35). Unlike those ¢
pressions, however, the ones produced by Discrete Diffusion Monte Carlo involve only |
properties of the given zone; IMD probabilities involve quantities from neighboring zon
also.

The Discrete Diffusion Monte Carlo method has, as of this writing, been applied
the time-independent diffusion equation [13] and the time-dependent equilibrium diffusi
equation [14], and only in one dimension. As it is similar to IMD, it will probably produce
similar results when applied to the nonequilibrium diffusion equation, Eq.(10). When tt
occurs, a meaningful comparison of the two methods will possible .

Lastly, we consider the hybrid method of N'’Kaoua [17], which is based on the Symbo
IMC (SIMC) method of Brooks [18].

The IMC procedure evolved from an attempt to estimate the future matter temperatur
the source term of the radiative transfer equation. Symbolic IMC [18], rather than estimat
this term, regards it as an unknown. Monte Carlo particles are advanced, as in IMC, but f
unknown weights; the weight is a fraction of the unknoifh! energy of the zone from
which the particle is emitted. The result of advancing these particles is a matrix equati
The elements in the unknown vector aretfie' zone energies. The elements of the matrix
are the net gains and losses obtained from emission and absorption of the particles.
size of the matrix is equal to the number of zones in the problem squared. It has non:
elements connecting every pair of zones which have exchanged energy via particle tran
This matrix equation must then be solved to obtain the new matter energies.

N’kaoua [17] developed a hybrid method using SIMC. It essentially replaces some
the elements of the matrix obtained by SIMC with elements derived from a discreti:
tion of the diffusion equation. This replacement is done in regions where the diffusi
equation is an accurate approximation. This accelerates the SIMC method by repla
a Monte Carlo calculation of the matrix elements in regions where it is expensive. As
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the pure SIMC method, the matrix equation calculated by the hybrid method must still
solved.

SIMC, and the hybrid method of N'’kaoua, are both truly implicit in the matter temper
ture. Thus both avoid the problems with stability and accuracy described in [4]. This con
at the cost of solving a matrix equation, which takes place after the Monte Carlo calculati
Since this matrix has nonzero elements connecting zones which exchange patrticles, it c
conceivably be very dense where the mean free path of particles extends over many z(
Solution of a dense matrix of this size, especially in a three-dimensional problem, co
be prohibitive. Although IMD employs the same estimate of future matter temperature
IMC, and is thus subject to the time step restrictions described in [4], it does not reqt
solution of a matrix equation. This may make IMD more cost effective for many problen

6. NUMERICAL RESULTS

We demonstrate that the IMC/IMD hybrid method produces a result essentially identi
to the result of a standard matrix inversion method, differing only in that it has, like ¢
Monte Carlo methods, some statistical noise. We then demonstrate the IMC/IMD hyk
method on three problems which possess both opaque and nonopaque regions, for v
diffusion alone would be expected to produce an inaccurate answer, and for which Il
alone requires a prohibitively large amount of computational resources. We also comy
the IMC/IMD hybrid method to the Random Walk method.

The first problem is the test problem from [7]. This test problem consists of a slab
material with mass density = 1, specific heat, = 1, and opacity, = 1 extending from
x = 0 to x = 10. A temperature source Wiffsouce= +/2 atx = 0 generates a Marshak
wave which penetrates into the initially cold slab, which has an initial temperature
Tinitiar = 107%2. The units were chosen such tltat a = k = 1.

We compare the output of a pure IMD calculation to the results of a simulation using 1
difference equations given in [7] and solved with a tridiagonal solver as in [9]. This is do
to demonstrate that the IMD method of solution produces the same result as the applice
of a tridiagonal solver to the discretized diffusion equation given by Egs. (23) and (2
(As noted above, no flux limiter was used in either simulation.)

Figure 1 shows the radiation temperature at three different times during the calculat
as calculated with IMD and with the method given in [7]. Figure 2 shows the matt
temperature. These figures plot the same variables as Figs. 1 and 2 in [7].

The two methods produce almost identical results. In this calculation, IMD was run w
10,000 patrticles. The IMD calculation took considerably longer than the calculation dc
with the traditional finite difference method. (Both calculations took one minute or less
a 533 MHz DEC alpha machine.) This is not surprising, as the tridiagonal matrix that 1
difference method in [7] uses may rapidly be inverted. Monte Carlo matrix inversions «
usually much slower than traditional methods of inverting a matrix [10]. We are interest
in the speed-up we can attain over IMC calculations on problems for which diffusion cani
be employed everywhere. We now examine two such problems, comparing pure IMC to
IMC/IMD hybrid method.

The first hybrid problem is a one-dimensional Cartesian problem in which a region w
0a = .1l abuts aregion with, = 100. The low-opacity region extends from= 5tox = 10
and is heated by a temperature source-at10 with a constant temperaturefrce = 1.0.
The high-opacity region extends from= 0 to x = 5. A vacuum boundary condition is
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FIG. 1. Radiation temperatur€ vs.x fort = 0.1, 1.0, and 10 for the first test problem. A surface source
with T = +/2 atx = 0 drives a Marshak wave in the direction of increasindResults from IMD are compared
to the results of a finite difference diffusion calculation. The two methods produce similar results.

imposed ak = 0. The initial temperature in both materials Wlagia = 1073, and the heat
capacity was 483. The units were chosen such tliat a = k = 1.

In the high-opacity region, the scattering fractierl — f = .988 (independent of tem-
perature), so IMC particles in that region have a very small scattering mean free path. (T
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FIG. 2. Matter temperatur@ vs.x fort = 0.1, 10, and 10 for the first test problem. A surface source with
T = /2 atx = 0 drives a Marshak wave in the direction of increasm@Results from IMD are compared to the
results of a finite difference diffusion calculation. The two methods produce similar results.
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value of f results from using a time step aft = 10). We would expect that IMC would
be very expensive in the high-opacity region and that diffusion would be inaccurate in-
low-opacity region.

The problem has an approximate steady state solution. In the steadyEstateE =
aT*. The temperature in the low-opacity region will approdihuce= 1. In the high-
opacity region, the matter and radiation energy densities will be equal and will satisfy
time-independent diffusion equation

_0 [DaE} = (45)

on O0< x <5, with E=1 atx =5 andD = 1/300. A vacuum boundary condition is
imposed ak = O:

dE
Ex—0+2D— =0. 46
x=0 T 9% o ( )
This yields the solution
X+ 2D
Ex) = 47
=520 47

for 0 < x < 5. We can get the equilibrium value of temperature flbm) = E(x)?%/a.

The problem was run with 110 zones, with zoningaxX = 1 for 0 < X < 4 and 5<
X < 10. In 4< x < 5 there were 20 zones with geometrically decreasing size, with tf
largest zone spanning the regior= 4 tox = 4.0928033856. The time steft = 10, and
the problem was run tb = 50,000. This was considered to be steady state because
solution at = 100,000 was essentially the same as-at50,000. The IMC calculation was
run with 25000 particles per time step. In the hybrid simulation, the sum of the number
IMC and IMD patrticles was 25,000 in each time step.

Figure 3 shows matter temperature for a simulation run with pure IMC, and with a hyb
method with IMC patrticles run everywhere and IMD particles run in the high-opacity regi
0 < x < 5. Both methods show good agreement with the approximate analytic answ
which is also shown.

The pure IMC calculation took approximately057 x 10° s, about 29.4 h. The hybrid
method took approximately 3800 s. (1.06 h), giving a speed-up of approximately a fac
of 27.8. Both calculations were run on a 533 MHz DEC alpha chip.

Figure 4 shows a plot of the number of particle steps taken by both methods. The
IMC method takes most of its steps in the high-opacity region, which spans zones 1 to 6(
the hybrid calculation, many fewer IMC steps were taken in the high-opacity region. Sir
each IMC step takes about the same amount of computer time, and the IMC steps are |
expensive than the IMD steps, the time of each simulation is approximately proportiona
the area under the curve representing the number of IMC steps taken. Thus the speed-
almost 28 times is understandable as a result of the fact that so many fewer IMC steps
taken in the high-opacity material.

The statistical behavior of the hybrid method is examined in Fig. 5. Fig. 5 shows the er
in the temperature, and the variance in the temperature at three different spatial locat
in the problem, at the final time=50,000. The three locations are zone 1x at 0, at the
vacuum boundary in the diffusive region; zone 60x at 5, the diffusive zone which abuts
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FIG. 3. Matter temperaturd vs. x att = 50,000 for the first hybrid test problem. A surface source with
T = 1atx = 10drives a Marshak wave in the direction of decreasiiesults from a calculation using only IMC
are compared to results obtained from the hybrid method. Both calculations were done with 25,000 total parti
The approximate analytic answer at several points is also shown. The two methods produce similar result:
agree well with the approximate analytic results.
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FIG. 4. Number of particle steps vs. zone number for the first hybrid test problem. The number of steps ta
by IMC particles, which are the most expensive part of the calculation, is much smaller when the hybrid met
is used. Both calculations were done with 25,000 total particles.
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FIG.5. Total error, and variance at three differembcations, plotted vs. number of particles in the first hybrid
test problem. The error should be proportional fa/N, and the variance proportional tg[{, whereN is the
number of particles. Curve fits show approximate agreement with this expected behavior. The error decline
N~—43; the variance of zone 1 likhl~°88; for zone 60, likeN~1%; for zone 110, likeN %%, The overall value of
the variance for zone 110 is lower than that for the other zones because there are more particles in that zone
it is near the temperature source.

the thin material; and zone 110, the zone in the nondiffusive region which abuts the te
perature source.

These quantities are plotted against the number of particles used in the calculation.
particle number used in these calculations began at 1000 and was increased by a fac
two, with the final value being 64,000. For each different number of particles, 10 runs w
done. The error was averaged over these 10 runs, and the variahcd the three zones
was calculated. The error was approximated as the absolute value of the difference bet
the value ofT and the approximate analytic value in every zone in the problem. This ert
was averaged over the 10 runs.

The error should decline a8~1/2, where N is the number of particles. A fit of the error
curve in Fig. 5 shows that the error declineshis*3. This value is slightly larger than
expected, probably due to the fact that there is a residual error in the calculation du
zoning. That is, we cannot expect the error to decline Nk&/? for very largeN since
there is a minimum discretization error. The variance should declinéNiike For zone 1,
it declines likeN ~988; for zone 60, likeN~1; for zone 110, likeN %%, These results are
consistent with the statistical behavior we expect from a Monte Carlo simulation. Thus,
IMC/IMD hybrid method exhibits the behavior we expect from a Monte Carlo simulatiol

In Fig. 6, we examine the effects of converting IMC particles to IMD particles in th
diffusive region of the problem. Figure 6 compares the three different results of the o
dimensional hybrid test problem. In one case, IMC particles were never converted to I
particles. This is the result discussed above and used in generating the data picture
Figs. 3 and 4. In the second case, IMC patrticles reaching census in the diffusive regio
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FIG. 6. Matter temperaturd vs. x att = 50,000 for the first hybrid test problem. A surface source with
T = 1 atx = 10 drives a Marshak wave in the direction of decreasirigesults from three calculations using the
hybrid method are shown. In one, IMC patrticles in the diffusive region are tracked with IMC until they are Kille
off through Russian rouletting or leave the problem. In another, IMC particles reaching census in the diffus
region were converted to IMD patrticles in the next time step. In the third, IMC particles which scattered 50 tin
in the diffusive region were converted to IMD particles in the current time step. All calculations were done w
25,000 total particles. All methods produce similar results.

the end of a time step were converted to IMD patrticles at the beginning of the next time s
In the third case, IMC particles which scattered 50 times in the diffusive region witho
leaving it were converted to IMD particles.

Figure 6 shows that all three cases produce similar results. The methods that cor
IMC particles to IMD particles complete the simulation faster. When IMC particles are n
converted, the simulation takes about 3800 s, when census particles are converted, it |
about 1340 s, when IMC particles are converted after 50 scatters, it takes about 1100 s.
is easily understood, since most of the time in simulations is taken up by advancing Il
particles, and converting them to IMD particles means that fewer IMC steps are simulat
Converting IMC patrticles into IMD patrticles gives approximately another factor of 3 spee
up in the one-dimensional hybrid problem.

The second hybrid problem is used to compare the IMC/IMD hybrid acceleration meth
to the Fleck and Canfield Random Walk acceleration method [12]. The problem has e\
zone beginning at = 1, with temperature sources with= 1 at either end. This problem
has a simple analytic answer: the temperature stays-atl everywhere at all times. This
problem is run on the same mesh as the first hybrid problem described above, and with
same units. The material properties are the same, except that the opaque material h
opacity of 500 rather than 100. This was done so that the opaque zones, most of which |
a length of 01, are more than 5 mean free paths across. Because of the restriction that
size of the sphere the Random Walk algorithm uses be at least 5 mean free paths, Rar
Walk would never be invoked in the problem if the opacity remained 100. No sphere of tl
size could fit into the zones in the problem.
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FIG. 7. Matter temperaturd vs.x att = 10,000 for the second hybrid test problem. Initial conditions are
T = 1 everywhere, and surface sources With= 1 atx = 0 andx = 10 maintain this steady state. Results from
two calculations using the Random Walk method and the IMC/IMD hybrid method are shown. Both accel
ation methods reproduce the steady state solution with reasonable accuracy. The Random Walk method
approximately 245 x 10* s, while the IMC/IMD method took 450 s.

The problem was run with both the IMC/IMD hybrid algorithm and with IMC using the
Random Walk algorithm. The size of the spheres used in the Random Walk algorithm \
required to be 5 mean free paths or larger. Both simulations used 50,000 particles and:
run tot = 10,000 withAt = 10. Running this problem with IMC alone would have taken
a prohibitively large amount of computer time, so this was not done.

Figure 7 shows the matter temperature at the end of the simulation. Both methods pro«
a solution that agrees reasonably well with the analytic solution. The calculation us
Random Walk took about.B4 x 10° s (about 63 h). The IMC/IMD hybrid took about
450 s, providing a speed-up of approximately 54.

The IMC/IMD hybrid algorithm is much faster than the Random Walk method on th
problem for two reasons. First, many more IMC steps are taken in the opaque material w
Random Walk is used than when IMD is used. This is because IMC steps are taken w
the particle is near the boundary of a zone, and because we have required that an IMC
be taken between consecutive IMD steps. IMD patrticles quickly replace IMD particles
the opaque regions and very few IMC steps are taken there. Second, more Random !
steps than IMD steps are taken in the opaque material. This is because a Random Walk
will terminate in or on the sphere centered on the particle and will not get the particle «
of the zone. Many Random Walk and IMC steps are required to get a particle to leav
zone. Each IMD path moves the particle to a neighboring zone. This effect on the rela
run times of the methods is enhanced by the fact that IMD steps are less expensive
Random Walk steps, which require sampling from a table.

The reason the IMC/IMD algorithm is so much faster than Random Walk on this proble
is illustrated in Fig. 8. This figure shows the number of steps taken by particles in the t
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FIG. 8. Number of steps taken by particles using the different acceleration methods in the two simulatic
of the problem pictured in Fig. 7. For the Random Walk simulation, the number of IMC steps and the numbe
Random Walk steps are shown as solid lines. For the IMC/IMD hybrid simulation, the number of IMC steps ¢
IMD steps taken are shown as dotted lines. Many more IMC steps are taken in the opaque material when Rat
Walk is used. The number of Random Walk steps taken is much higher than the number of IMD steps.

simulations. For the Random Walk simulation, it shows the number of IMC steps and
number of Random Walk steps. For the IMC/IMD hybrid simulation, it shows the numb
of IMC steps and IMD steps taken. Many more IMC steps are taken in the opaque mate
when Random Walk is used, and the number of Random Walk steps taken is much hig
than the number of IMD steps.

The third hybrid problem is a two-dimensional problem developed by Frank Grazig
and Jim Le Blanc often referred to as the tophat problem [19]. In this problem a cylindric
section of dense, opaque material is embedded in less dense, less opaque material, wt
itself embedded in a cylinder of the dense, opaque material. The outer region extends
z=0toz=7, and fronr = 0tor = 2. Inside of this, the inner region of dense material
extends fronz = 3toz = 4 and fromr = Otor = 1, and the region of less dense material
extends fronz = 0 to z = 2.5, and fromz = 4.5 to z = 7 with a radius of (b, and from
z=2.5t0oz = 4.5 with a radius of 15.

The dense material has a mass dengity 10 g/cn? and an opacityr, = 2000 cnT?.
The less dense material has= 0.01 g/cn? ando, = 0.2 cn 1. Both materials have a heat
capacityc, = 10 erg/g— keV.

Atemperature source wiffyource= 0.5 keV is applied at one end of the less dense mate
rial. Vacuum boundary conditions are applied at all other boundaries. The initial temperat
Tiniiar = 0.05 keV everywhere. Time units are such that 300 The time step begins at
At = 10~ and is increased by a factor of 1.1 each time step until it reaches 1.0, and is
constant at 1.0 thereafter.

This problem cannot be run accurately with diffusion alone because diffusion can
accurately model the flow of radiation around the corners. There is no analytic answer for
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FIG.9. T vs.t forthe five fiducial points located in the thin material in the tophat problem. This plot compare
results from pure IMC, the IMC/IMD hybrid method, and an Sn calculation. The time step for the IMC and t
hybrid calculation was the same, but only certain times for the hybrid calculation have been plotted to make
plot clearer. All three codes produce similar results. (The difference between Sn and IMC for the last point to |
up is due to a lack of particles in the cold region of the problem. This lack of particles prevented this zone fr
cooling off slightly before the thermal wave reached it.)

problem. The usual figures of merit are the matter temperature at five points in the optic
thin material. These points arg¢: = 0,z = 0.25), (r =0,z=2.75), (r = 1.25 z = 3.5),
r=0,z=4.25,and(r =0,z=6.75).

As time proceeds in this problem, radiation travels down the thin material and arot
the section of thick material in the middle of the problem, and the thick material slow
heats up. Itis in the heated parts of the thick regions that IMC will be most computatione
intensive.

In Fig. 9 we have plotted matter temperature at the five fiducial points from the hybi
simulation and the pure IMC calculation, as well as an Sn solution [20]. In this calcu
tion, we have converted IMC particles which take 50 steps in the opaque region to Il
particles, as described above. Both Monte Carlo calculations had 500,000 total particle:
time step. We see good agreement between all three simulations for all the points at 1
times. Not all points for the hybrid simulation are shown, in order to make the plot le
cluttered.

The only notable area of disagreement in this plot is in the behavior of the point farth
from the heat source. In the Sn simulation there is a small decrease in the temperatu
this point before the radiation wave begins to heat it. This does not occur in either Mo
Carlo simulation. This disagreement occurred because the IMC and hybrid calculati
were run with a variance reduction technique; particles were not allocated to zones
were still at the initial temperature. The zone farthest from the heat source, which is n
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FIG. 10. T vs.t for the five fiducial points located in the thin material in the tophat problem. This plo:
compares results from pure IMC to the IMC/IMD hybrid method. Results from three calculations using the hyb
method are shown. In one, IMC particles in the diffusive region are tracked with IMC until they are killed o
through Russian rouletting or leave the problem. In another, IMC particles reaching census in the diffusive re
were converted to IMD particles in the next time step. In the third, IMC particles which scattered 50 times in 1
diffusive region were converted to IMD particles in the current time step. All calculations were done with 500,0
total particles. All methods produce similar results.

the end of the problem, could actually cool off slightly before the radiation wave reach
it. The Sn calculation captured this transient, while the Monte Carlo calculations did n
although they could have if that zone had been allowed to radiate. As soon as the radie
reaches that zone, the effect of the cooling is quickly rendered unnoticeable, and all tf
simulations show good agreement for this point thereafter.

In Fig. 10, we examine the effects of converting IMC particles to IMD particles in th
diffusive region of the problem. In one case, IMC particles were never converted to IV
particles. In the second case, IMC particles reaching census in the diffusive region at
end of a time step were converted to IMD particles at the beginning of the next time st
In the third case, IMC particles which scattered 50 times in the diffusive region witho
leaving it were converted to IMD particles. The three cases are compared to a pure |
calculation. Figure 10 shows that all three cases produce similar results.

Att = 100, the hybrid calculation where IMC particles were converted to IMD particle
after 50 steps took about42* s (about 6.7 h). The hybrid calculation where IMC particles
reaching census in the opaque region were converted took approximéa@8ly 10° s
(about 51 h). With no conversion, the calculation took approximatég & 10° s (about
52 h). The pure IMC took aboutB3 x 10° s (about 159 h). Depending on which conversion
method is used, the hybrid method is faster by a factor of from 3 to almost 24. All simulatio
were run on a 533 MHz DEC alpha.
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The reason that the conversion method affects the run time of this problem more t
the one-dimensional one is due to the energetics of the problem. The energy input fi
the external temperature source and the radiating opaque matter during each time st
large compared to the amount of energy in radiation. Many census particles are Rus
rouletted when they reach census, so that particles may be apportioned to represer
energy from the sources at the beginning of the time step. This means that much of the
time is spent advancing IMC particles in the opaque material to the end of the time s
in which they entered the thick material. So converting the relatively few particles whi
survive the Russian rouletting to IMD particles in the next time step does not provide
significant reduction in run time. Converting these IMC particles to IMD particles aft
50 steps provides a significant decrease in run time because it converts the IMC part
which take the most time to simulate into the less expensive IMD particles.

Figure 11 shows a contour plot of the matter temperature in the problems 40. The
top half shows the hybrid calculation (with conversion after 50 steps), while the bottc
shows the reflected results of the pure IMC calculation. (Note that these are two se
rate calculations, whose results have been placed on the same plot by mapping the
IMC results to “negative” radius.) The contour lines are ten equally spaced lines betws
T = 0.05 andT = 0.5keV. The hybrid calculation shows less penetration of the therm
wave into the thick material, but the agreement in the thin material is very good, and
overall accuracy seems adequate.

We believe the smaller amount of heating in the thick material results from the fact ti
the diffusion approximation is not accurate in the cold, thick material, because the scatte
opacity is small while the material is cold. The factogiven by Eq. (4) is approximately

IMC only

FIG.11. T att = 100 for tophat problem. This plot shows matter temperature for every zone in the proble
It compares results from pure IMC to the IMC/IMD hybrid. IMC/IMD hybrid results are shown on the top pa
of the plot. Pure IMC results were mapped to “negative r” and are shown on the bottom part of the plot. Con
lines are equally spaced between 0.05 and 0.5. The hybrid method underpredicts heating where the wave
the thick material but shows good agreement in the thin material.
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unity until the material heats up. A more accurate way of using the hybrid algorithm wot
be to use IMD only in zones with small, rather than in all zones with a large opacity.

7. SUMMARY

We have developed a method for increasing the speed of IMC radiation transport calc
tions which contain regions where the opacity is large. This method employs a Monte Ce
method of matrix inversion to solve the diffusion equation. We have dubbed the mett
Implicit Monte Carlo Diffusion, which we abbreviate IMD. The IMD method employs par
ticles which resemble the particles used in the IMC radiation transport method. Becaus
this resemblance, the two methods can easily be combined into a hybrid method, in wi
IMD is used in optically thick parts of the problem, where the diffusion approximatio
provides an accurate approximation to the results of the transport equation. Since the |
method is considerably faster than the IMC method in these regions, the hybrid met
can run much faster than IMC alone on some problems. We have demonstrated this me
on one-dimensional Cartesian and two-dimensional cylindrical orthogonal mesh calct
tions. Test problems on these meshes show that the hybrid method is accurate anc
provide speed-ups greater than an order of magnitude. Future work will include extenc
the method to 3D unstructured grids and to problems with frequency-dependent opacit
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